These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 34883530)
21. Photocatalytic Hydrogen Production from Glycerol Aqueous Solutions as Sustainable Feedstocks Using Zr-Based UiO-66 Materials under Simulated Sunlight Irradiation. Rueda-Navarro CM; Ferrer B; Baldoví HG; Navalón S Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364583 [TBL] [Abstract][Full Text] [Related]
22. Support Effect of Metal-Organic Frameworks on Ethanol Production through Acetic Acid Hydrogenation. Yoshimaru S; Sadakiyo M; Maeda N; Yamauchi M; Kato K; Pirillo J; Hijikata Y ACS Appl Mater Interfaces; 2021 May; 13(17):19992-20001. PubMed ID: 33877813 [TBL] [Abstract][Full Text] [Related]
23. Heteroatom-Doped Ag Wang H; Zhang X; Zhang W; Zhou M; Jiang HL Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202401443. PubMed ID: 38407530 [TBL] [Abstract][Full Text] [Related]
24. Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy. Chen D; Yang W; Jiao L; Li L; Yu SH; Jiang HL Adv Mater; 2020 Jul; 32(30):e2000041. PubMed ID: 32529707 [TBL] [Abstract][Full Text] [Related]
25. Highly Durable Heterogeneous Atomic Catalysts. Shin S; Haaring R; So J; Choi Y; Lee H Acc Chem Res; 2022 May; 55(10):1372-1382. PubMed ID: 35230801 [TBL] [Abstract][Full Text] [Related]
26. Charge Separation by Creating Band Bending in Metal-Organic Frameworks for Improved Photocatalytic Hydrogen Evolution. Zhang C; Xie C; Gao Y; Tao X; Ding C; Fan F; Jiang HL Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202204108. PubMed ID: 35522460 [TBL] [Abstract][Full Text] [Related]
27. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au). Sun D; Liu W; Fu Y; Fang Z; Sun F; Fu X; Zhang Y; Li Z Chemistry; 2014 Apr; 20(16):4780-8. PubMed ID: 24644131 [TBL] [Abstract][Full Text] [Related]
28. Introducing Hydrogen-Bonding Microenvironment in Close Proximity to Single-Atom Sites for Boosting Photocatalytic Hydrogen Production. Hu S; Gao ML; Huang J; Wang H; Wang Q; Yang W; Sun Z; Zheng X; Jiang HL J Am Chem Soc; 2024 Jul; 146(29):20391-20400. PubMed ID: 38987861 [TBL] [Abstract][Full Text] [Related]
29. Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO Jiao L; Zhu J; Zhang Y; Yang W; Zhou S; Li A; Xie C; Zheng X; Zhou W; Yu SH; Jiang HL J Am Chem Soc; 2021 Nov; 143(46):19417-19424. PubMed ID: 34779627 [TBL] [Abstract][Full Text] [Related]
30. Rational Fabrication of Low-Coordinate Single-Atom Ni Electrocatalysts by MOFs for Highly Selective CO Zhang Y; Jiao L; Yang W; Xie C; Jiang HL Angew Chem Int Ed Engl; 2021 Mar; 60(14):7607-7611. PubMed ID: 33432715 [TBL] [Abstract][Full Text] [Related]
31. Photocatalytic Activity of Supported Metal Nanoparticles and Single Atoms. Najafi M; Abednatanzi S; Yousefi A; Ghaedi M Chemistry; 2021 Dec; 27(72):17999-18014. PubMed ID: 34672043 [TBL] [Abstract][Full Text] [Related]
32. A Strategy to Boost H Wang Y; Ling L; Zhang W; Ding K; Yu Y; Duan W; Liu B ChemSusChem; 2018 Feb; 11(4):666-671. PubMed ID: 29283214 [TBL] [Abstract][Full Text] [Related]
33. Modulating the Primary and Secondary Coordination Spheres of Single Ni(II) Sites in Metal-Organic Frameworks for Boosting Photocatalysis. Yang G; Wang D; Wang Y; Hu W; Hu S; Jiang J; Huang J; Jiang HL J Am Chem Soc; 2024 Apr; 146(15):10798-10805. PubMed ID: 38579304 [TBL] [Abstract][Full Text] [Related]
34. Construction and Sensing Amplification of Raspberry-Shaped MOF@MOF. Wu MX; Wei C; Wang XH; Xia QQ; Wang H; Liu X Inorg Chem; 2022 Mar; 61(11):4705-4713. PubMed ID: 35271263 [TBL] [Abstract][Full Text] [Related]
35. Identifying UiO-67 Metal-Organic Framework Defects and Binding Sites through Ammonia Adsorption. Swaroopa Datta Devulapalli V; McDonnell RP; Ruffley JP; Shukla PB; Luo TY; De Souza ML; Das P; Rosi NL; Karl Johnson J; Borguet E ChemSusChem; 2022 Jan; 15(1):e202102217. PubMed ID: 34725931 [TBL] [Abstract][Full Text] [Related]
36. Transforming CO Yang K; Jiang J ACS Appl Mater Interfaces; 2021 Dec; 13(49):58723-58736. PubMed ID: 34846838 [TBL] [Abstract][Full Text] [Related]
37. A rational study on the geometric and electronic properties of single-atom catalysts for enhanced catalytic performance. Xue Q; Xie Y; Wu S; Wu TS; Soo YL; Day S; Tang CC; Man HW; Yuen ST; Wong KY; Wang Y; Lo BTW; Tsang SCE Nanoscale; 2020 Nov; 12(45):23206-23212. PubMed ID: 33201980 [TBL] [Abstract][Full Text] [Related]
38. Heterogeneous Metal-Organic-Framework-Based Biohybrid Catalysts for Cascade Reactions in Organic Solvent. Wang Y; Zhang N; Zhang E; Han Y; Qi Z; Ansorge-Schumacher MB; Ge Y; Wu C Chemistry; 2019 Feb; 25(7):1716-1721. PubMed ID: 30475411 [TBL] [Abstract][Full Text] [Related]
39. Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. Pan Y; Qian Y; Zheng X; Chu SQ; Yang Y; Ding C; Wang X; Yu SH; Jiang HL Natl Sci Rev; 2021 Jan; 8(1):nwaa224. PubMed ID: 34691561 [TBL] [Abstract][Full Text] [Related]
40. Zirconium-Based Metal-Organic Framework for Efficient Photocatalytic Reduction of CO Gao X; Guo B; Guo C; Meng Q; Liang J; Liu J ACS Appl Mater Interfaces; 2020 May; 12(21):24059-24065. PubMed ID: 32364366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]