These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Reinforcement Efficiency of Cellulose Microfibers for the Tensile Stiffness and Strength of Rigid Low-Density Polyurethane Foams. Andersons J; Kirpluks M; Cabulis U Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32549317 [TBL] [Abstract][Full Text] [Related]
4. Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation. Abolins A; Pomilovskis R; Vanags E; Mierina I; Michalowski S; Fridrihsone A; Kirpluks M Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668608 [TBL] [Abstract][Full Text] [Related]
10. Mechanical and Insulation Performance of Rigid Polyurethane Foam Reinforced with Lignin-Containing Nanocellulose Fibrils. Bello KO; Yan N Polymers (Basel); 2024 Jul; 16(15):. PubMed ID: 39125147 [TBL] [Abstract][Full Text] [Related]
11. Rigid Polyurethane Foams with Various Isocyanate Indices Based on Polyols from Rapeseed Oil and Waste PET. Ivdre A; Abolins A; Sevastyanova I; Kirpluks M; Cabulis U; Merijs-Meri R Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32224860 [TBL] [Abstract][Full Text] [Related]
12. One More Step towards a Circular Economy for Thermal Insulation Materials-Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry. Kowalczyk Ł; Korol J; Chmielnicki B; Laska A; Chuchala D; Hejna A Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676519 [TBL] [Abstract][Full Text] [Related]
13. Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams. Leszczyńska M; Malewska E; Ryszkowska J; Kurańska M; Gloc M; Leszczyński MK; Prociak A Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916735 [TBL] [Abstract][Full Text] [Related]
14. New Composite Materials Made from Rigid/Flexible Polyurethane Foams with Fir Sawdust: Acoustic and Thermal Behavior. Tiuc AE; Borlea Mureșan SI; Nemeș O; Vermeșan H; Vasile O; Popa F; Pințoi R Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080718 [TBL] [Abstract][Full Text] [Related]
15. From Bioresources to Thermal Insulation Materials: Synthesis and Properties of Two-Component Open-Cell Spray Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil. Polaczek K; Kurańska M; Malewska E; Czerwicka-Pach M; Prociak A Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763416 [TBL] [Abstract][Full Text] [Related]
16. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil. Kim HJ; Jin X; Choi JW Sci Rep; 2024 Jun; 14(1):13490. PubMed ID: 38866939 [TBL] [Abstract][Full Text] [Related]
19. Polyurethane Composite Foams Synthesized Using Bio-Polyols and Cellulose Filler. Uram K; Leszczyńska M; Prociak A; Czajka A; Gloc M; Leszczyński MK; Michałowski S; Ryszkowska J Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206533 [TBL] [Abstract][Full Text] [Related]
20. Influence of Reactive Amine-Based Catalysts on Cryogenic Properties of Rigid Polyurethane Foams for Space and On-Ground Applications. Yakushin V; Rundans M; Holynska M; Sture B; Cabulis U Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]