These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34883796)

  • 1. Comparison of Four RTK Receivers Operating in the Static and Dynamic Modes Using Measurement Robotic Arm.
    Kadeřábek J; Shapoval V; Matějka P; Kroulík M; Kumhála F
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real Time Precise Relative Positioning with Moving Multiple Reference Receivers.
    Li H; Gao S; Li L; Jia C; Zhao L
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Redundant Configuration of Four Low-Cost GNSS-RTK Receivers for Reliable Estimation of Vehicular Position and Posture.
    Morales J; Martínez JL; García-Cerezo AJ
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Displacement Estimation for Long-Span Bridges Using Acceleration and Heuristically Enhanced Displacement Measurements of Real-Time Kinematic Global Navigation System.
    Kim K; Sohn H
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32906808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode.
    Janos D; Kuras P
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Moving Baseline RTK/Motion Sensor-Integrated Positioning-Based Autonomous Driving Algorithm for a Speed Sprayer.
    Han JH; Park CH; Jang YY
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying.
    Wielgocka N; Hadas T; Kaczmarek A; Marut G
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Global Navigation Satellite System Devices on Speed Tracking in Road (Tran)SPORT Applications.
    Supej M; Cuk I
    Sensors (Basel); 2014 Dec; 14(12):23490-23508. PubMed ID: 25494349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging GNSS Outages with IMU and Odometry: A Case Study for Agricultural Vehicles.
    Reitbauer E; Schmied C
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34210053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Long-Period Precise Time-Relative Positioning Method Based on RTS Data.
    Lu Y; Ji S; Tu R; Weng D; Lu X; Chen W
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Improved Relative GNSS Tracking Method Utilizing Single Frequency Receivers.
    Yang W; Liu Y; Liu F
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32707822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GNSS Precise Relative Positioning Using A Priori Relative Position in a GNSS Harsh Environment.
    Kim E
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes.
    Hamza V; Stopar B; Ambrožič T; Turk G; Sterle O
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking Performance in Endurance Racing Sports: Evaluation of the Accuracy Offered by Three Commercial GNSS Receivers Aimed at the Sports Market.
    Gløersen Ø; Kocbach J; Gilgien M
    Front Physiol; 2018; 9():1425. PubMed ID: 30356794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of MLC leaf positioning accuracy for static and dynamic IMRT treatments using DAVID in vivo dosimetric system.
    Karagoz G; Zorlu F; Yeginer M; Yildiz D; Ozyigit G
    J Appl Clin Med Phys; 2016 Mar; 17(2):14-23. PubMed ID: 27074451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.
    Wang L; Li Z; Zhao J; Zhou K; Wang Z; Yuan H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring.
    Koo G; Kim K; Chung JY; Choi J; Kwon NY; Kang DY; Sohn H
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29182563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An SVM Based Weight Scheme for Improving Kinematic GNSS Positioning Accuracy with Low-Cost GNSS Receiver in Urban Environments.
    Lyu Z; Gao Y
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static Positioning under Tree Canopy Using Low-Cost GNSS Receivers and Adapted RTKLIB Software.
    Tomaštík J; Everett T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal methods of RTK-GPS/accelerometer integration to monitor the displacement of structures.
    Hwang J; Yun H; Park SK; Lee D; Hong S
    Sensors (Basel); 2012; 12(1):1014-34. PubMed ID: 22368508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.