BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 34883878)

  • 1. Semi-supervised model based on implicit neural representation and mutual learning (SIMN) for multi-center nasopharyngeal carcinoma segmentation on MRI.
    Han X; Chen Z; Lin G; Lv W; Zheng C; Lu W; Sun Y; Lu L
    Comput Biol Med; 2024 Jun; 175():108368. PubMed ID: 38663351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel LVPA-UNet network for target volume automatic delineation: An MRI case study of nasopharyngeal carcinoma.
    Zhang Y; Xu HR; Wen JH; Hu YJ; Diao YL; Chen JL; Xia YF
    Heliyon; 2024 May; 10(10):e30763. PubMed ID: 38770315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WET-UNet: Wavelet integrated efficient transformer networks for nasopharyngeal carcinoma tumor segmentation.
    Zeng Y; Li J; Zhao Z; Liang W; Zeng P; Shen S; Zhang K; Shen C
    Sci Prog; 2024; 107(2):368504241232537. PubMed ID: 38567422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion of encoder-decoder deep networks improves delineation of multiple nuclear phenotypes.
    Khoshdeli M; Winkelmaier G; Parvin B
    BMC Bioinformatics; 2018 Aug; 19(1):294. PubMed ID: 30086715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MFNet: Meta-learning based on frequency-space mix for MRI segmentation in nasopharyngeal carcinoma.
    Li Y; Chen Q; Li H; Wang S; Chen N; Han T; Wang K; Yu Q; Cao Z; Tang J
    J Cell Mol Med; 2024 May; 28(9):e18355. PubMed ID: 38685683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepMTS: Deep Multi-Task Learning for Survival Prediction in Patients With Advanced Nasopharyngeal Carcinoma Using Pretreatment PET/CT.
    Meng M; Gu B; Bi L; Song S; Feng DD; Kim J
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4497-4507. PubMed ID: 35696469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning signatures reveal multiscale intratumor heterogeneity associated with biological functions and survival in recurrent nasopharyngeal carcinoma.
    Zhao X; Liang YJ; Zhang X; Wen DX; Fan W; Tang LQ; Dong D; Tian J; Mai HQ
    Eur J Nucl Med Mol Imaging; 2022 Jul; 49(8):2972-2982. PubMed ID: 35471254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for locally advanced nasopharyngeal carcinoma prognostication based on pre- and post-treatment MRI.
    Li S; Deng YQ; Hua HL; Li SL; Chen XX; Xie BJ; Zhu Z; Liu R; Huang J; Tao ZZ
    Comput Methods Programs Biomed; 2022 Jun; 219():106785. PubMed ID: 35397409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feasible method to evaluate deformable image registration with deep learning-based segmentation.
    Yang B; Chen X; Li J; Zhu J; Men K; Dai J
    Phys Med; 2022 Mar; 95():50-56. PubMed ID: 35091332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Artificial Intelligence in Radiotherapy of Nasopharyngeal Carcinoma with Magnetic Resonance Imaging.
    Zhao W; Zhang D; Mao X
    J Healthc Eng; 2022; 2022():4132989. PubMed ID: 35154619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale Local Enhancement Deep Convolutional Networks for the Automated 3D Segmentation of Gross Tumor Volumes in Nasopharyngeal Carcinoma: A Multi-Institutional Dataset Study.
    Yang G; Dai Z; Zhang Y; Zhu L; Tan J; Chen Z; Zhang B; Cai C; He Q; Li F; Wang X; Yang W
    Front Oncol; 2022; 12():827991. PubMed ID: 35387126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis.
    Wang CK; Wang TW; Yang YX; Wu YT
    Bioengineering (Basel); 2024 May; 11(5):. PubMed ID: 38790370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning for Fully Automatic Tumor Segmentation on Serially Acquired Dynamic Contrast-Enhanced MRI Images of Triple-Negative Breast Cancer.
    Xu Z; Rauch DE; Mohamed RM; Pashapoor S; Zhou Z; Panthi B; Son JB; Hwang KP; Musall BC; Adrada BE; Candelaria RP; Leung JWT; Le-Petross HTC; Lane DL; Perez F; White J; Clayborn A; Reed B; Chen H; Sun J; Wei P; Thompson A; Korkut A; Huo L; Hunt KK; Litton JK; Valero V; Tripathy D; Yang W; Yam C; Ma J
    Cancers (Basel); 2023 Oct; 15(19):. PubMed ID: 37835523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning in MRI-guided Radiation Therapy: A Systematic Review.
    Eidex Z; Ding Y; Wang J; Abouei E; Qiu RLJ; Liu T; Wang T; Yang X
    ArXiv; 2023 Mar; ():. PubMed ID: 36994167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CAFS: An Attention-Based Co-Segmentation Semi-Supervised Method for Nasopharyngeal Carcinoma Segmentation.
    Chen Y; Han G; Lin T; Liu X
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DCNet: Densely Connected Deep Convolutional Encoder-Decoder Network for Nasopharyngeal Carcinoma Segmentation.
    Li Y; Han G; Liu X
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution Encoder-Decoder Networks for Low-Contrast Medical Image Segmentation.
    Zhou S; Nie D; Adeli E; Yin J; Lian J; Shen D
    IEEE Trans Image Process; 2019 Jun; ():. PubMed ID: 31226074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel M-SegNet with global attention CNN architecture for automatic segmentation of brain MRI.
    Yamanakkanavar N; Lee B
    Comput Biol Med; 2021 Sep; 136():104761. PubMed ID: 34426168
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.