These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34883880)
21. Mathematical modeling of MSW combustion and SNCR in a full-scale municipal incinerator and effects of grate speed and oxygen-enriched atmospheres on operating conditions. Liang Z; Ma X Waste Manag; 2010 Dec; 30(12):2520-9. PubMed ID: 20627508 [TBL] [Abstract][Full Text] [Related]
22. A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition. Lin X; Wang F; Chi Y; Huang Q; Yan J Waste Manag; 2015 Feb; 36():24-32. PubMed ID: 25536862 [TBL] [Abstract][Full Text] [Related]
23. Behavior of cesium in municipal solid waste incineration. Oshita K; Aoki H; Fukutani S; Shiota K; Fujimori T; Takaoka M J Environ Radioact; 2015 May; 143():1-6. PubMed ID: 25697082 [TBL] [Abstract][Full Text] [Related]
24. Municipal solid waste incineration in China and the issue of acidification: A review. Ji L; Lu S; Yang J; Du C; Chen Z; Buekens A; Yan J Waste Manag Res; 2016 Apr; 34(4):280-97. PubMed ID: 26941208 [TBL] [Abstract][Full Text] [Related]
25. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill. Kong Q; Yao J; Qiu Z; Shen D Biomed Res Int; 2016; 2016():9687879. PubMed ID: 28044139 [TBL] [Abstract][Full Text] [Related]
26. Numerical simulation of gas concentration and dioxin formation for MSW combustion in a fixed bed. Sun R; Ismail TM; Ren X; Abd El-Salam M J Environ Manage; 2015 Jul; 157():111-7. PubMed ID: 25897505 [TBL] [Abstract][Full Text] [Related]
27. Characterising boiler ash from a circulating fluidised bed municipal solid waste incinerator and distribution of PCDD/F and PCB. Zhang M; Buekens A; Li X Environ Sci Pollut Res Int; 2018 Aug; 25(23):22775-22789. PubMed ID: 29855878 [TBL] [Abstract][Full Text] [Related]
28. Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices. Lu CH; Chuang KH Environ Technol; 2016; 37(3):399-406. PubMed ID: 26226945 [TBL] [Abstract][Full Text] [Related]
29. A full-scale study on thermal degradation of polychlorinated dibenzo- p-dioxins and dibenzofurans in municipal solid waste incinerator fly ash and its secondary air pollution control in China. Gao X; Ji B; Yan D; Huang Q; Zhu X Waste Manag Res; 2017 Apr; 35(4):437-443. PubMed ID: 27909210 [TBL] [Abstract][Full Text] [Related]
30. Dioxin emission prediction from a full-scale municipal solid waste incinerator: Deep learning model in time-series input. Wen C; Lin X; Ying Y; Ma Y; Yu H; Li X; Yan J Waste Manag; 2023 Oct; 170():93-102. PubMed ID: 37562201 [TBL] [Abstract][Full Text] [Related]
31. Bottom ash derived from municipal solid waste and sewage sludge co-incineration: First results about characterization and reuse. Assi A; Bilo F; Federici S; Zacco A; Depero LE; Bontempi E Waste Manag; 2020 Oct; 116():147-156. PubMed ID: 32799096 [TBL] [Abstract][Full Text] [Related]
32. Improving waste-incineration energy recovery efficiency using a reverse calculation algorithm to estimate waste composition and heating value. Lim M; Lee Y; Lee Y; Yang W; Kim S Waste Manag; 2024 Dec; 190():486-495. PubMed ID: 39427593 [TBL] [Abstract][Full Text] [Related]
33. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water]. Wang L; Jin J; Li XD; Chi Y; Yan JH Huan Jing Ke Xue; 2010 Aug; 31(8):1973-80. PubMed ID: 21090322 [TBL] [Abstract][Full Text] [Related]
34. Co-combustion of shredder residues and municipal solid waste in a Swedish municipal solid waste incinerator. Redin LA; Hjelt M; Marklund S Waste Manag Res; 2001 Dec; 19(6):518-25. PubMed ID: 12201681 [TBL] [Abstract][Full Text] [Related]
35. Human biomonitoring of polycyclic aromatic hydrocarbonsand metals in the general population residing near the municipal solid waste incinerator of Modena, Italy. Gatti MG; Bechtold P; Campo L; Barbieri G; Quattrini G; Ranzi A; Sucato S; Olgiati L; Polledri E; Romolo M; Iacuzio L; Carrozzi G; Lauriola P; Goldoni CA; Fustinoni S Chemosphere; 2017 Nov; 186():546-557. PubMed ID: 28806681 [TBL] [Abstract][Full Text] [Related]
36. Energy recovery potential from incineration using municipal solid waste based on multi-scenario analysis in Beijing. Gu W; Liu D; Wang C Environ Sci Pollut Res Int; 2021 Jun; 28(21):27119-27131. PubMed ID: 33506413 [TBL] [Abstract][Full Text] [Related]
37. Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China. Wang T; Chen T; Lin X; Zhan M; Li X Environ Sci Pollut Res Int; 2017 Feb; 24(6):5607-5618. PubMed ID: 28035608 [TBL] [Abstract][Full Text] [Related]
38. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand. Muenhor D; Satayavivad J; Limpaseni W; Parkpian P; Delaune RD; Gambrell RP; Jugsujinda A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Mar; 44(4):376-87. PubMed ID: 19184705 [TBL] [Abstract][Full Text] [Related]
39. Fate of dioxins in a municipal solid waste incinerator with state-of-the-art air pollution control devices in China. Wei J; Li H; Liu J Environ Pollut; 2021 Nov; 289():117798. PubMed ID: 34340177 [TBL] [Abstract][Full Text] [Related]
40. Dioxin-like PCBs released from waste incineration and their deposition flux. Akai S; Hayakawa K; Takatsuki H; Kawakami I Environ Sci Technol; 2001 Sep; 35(18):3601-7. PubMed ID: 11783634 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]