These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34883905)
1. Super Resolution Generative Adversarial Network (SRGANs) for Wheat Stripe Rust Classification. Maqsood MH; Mumtaz R; Haq IU; Shafi U; Zaidi SMH; Hafeez M Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883905 [TBL] [Abstract][Full Text] [Related]
2. Wheat Yellow Rust Disease Infection Type Classification Using Texture Features. Shafi U; Mumtaz R; Haq IU; Hafeez M; Iqbal N; Shaukat A; Zaidi SMH; Mahmood Z Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009689 [TBL] [Abstract][Full Text] [Related]
3. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images. Zhao M; Wei Y; Wong KKL Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953 [TBL] [Abstract][Full Text] [Related]
4. A Deep-Learning-Based Approach for Wheat Yellow Rust Disease Recognition from Unmanned Aerial Vehicle Images. Pan Q; Gao M; Wu P; Yan J; Li S Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640873 [TBL] [Abstract][Full Text] [Related]
5. The NWRD Dataset: An Open-Source Annotated Segmentation Dataset of Diseased Wheat Crop. Anwar H; Khan SU; Ghaffar MM; Fayyaz M; Khan MJ; Weis C; Wehn N; Shafait F Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571726 [TBL] [Abstract][Full Text] [Related]
6. Crop Disease Classification on Inadequate Low-Resolution Target Images. Wen J; Shi Y; Zhou X; Xue Y Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824352 [TBL] [Abstract][Full Text] [Related]
7. Using super-resolution generative adversarial network models and transfer learning to obtain high resolution digital periapical radiographs. Moran MBH; Faria MDB; Giraldi GA; Bastos LF; Conci A Comput Biol Med; 2021 Feb; 129():104139. PubMed ID: 33271400 [TBL] [Abstract][Full Text] [Related]
8. Image Classification of Wheat Rust Based on Ensemble Learning. Pan Q; Gao M; Wu P; Yan J; AbdelRahman MAE Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015808 [TBL] [Abstract][Full Text] [Related]
10. WSRD-Net: A Convolutional Neural Network-Based Arbitrary-Oriented Wheat Stripe Rust Detection Method. Liu H; Jiao L; Wang R; Xie C; Du J; Chen H; Li R Front Plant Sci; 2022; 13():876069. PubMed ID: 35685013 [TBL] [Abstract][Full Text] [Related]
11. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan). Barrera K; Merino A; Molina A; Rodellar J Comput Methods Programs Biomed; 2023 Feb; 229():107314. PubMed ID: 36565666 [TBL] [Abstract][Full Text] [Related]
12. Super-resolution reconstruction of pneumocystis carinii pneumonia images based on generative confrontation network. Shi J; Ye Y; Liu H; Zhu D; Su L; Chen Y; Huang Y; Huang J Comput Methods Programs Biomed; 2022 Mar; 215():106578. PubMed ID: 34998168 [TBL] [Abstract][Full Text] [Related]
13. Wheat Stripe Rust Grading by Deep Learning With Attention Mechanism and Images From Mobile Devices. Mi Z; Zhang X; Su J; Han D; Su B Front Plant Sci; 2020; 11():558126. PubMed ID: 33013976 [TBL] [Abstract][Full Text] [Related]
14. [Super-resolution construction of intravascular ultrasound images using generative adversarial networks]. Wu Y; Yang F; Huang J; Liu Y Nan Fang Yi Ke Da Xue Xue Bao; 2019 Jan; 39(1):82-87. PubMed ID: 30692071 [TBL] [Abstract][Full Text] [Related]
15. Generative adversarial network-based super-resolution of diffusion-weighted imaging: Application to tumour radiomics in breast cancer. Fan M; Liu Z; Xu M; Wang S; Zeng T; Gao X; Li L NMR Biomed; 2020 Aug; 33(8):e4345. PubMed ID: 32521567 [TBL] [Abstract][Full Text] [Related]
16. An Infrared Array Sensor-Based Approach for Activity Detection, Combining Low-Cost Technology with Advanced Deep Learning Techniques. Muthukumar KA; Bouazizi M; Ohtsuki T Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632305 [TBL] [Abstract][Full Text] [Related]
17. [Identification and classification of disease severity of wheat stripe rust using near infrared spectroscopy technology]. Li XL; Qin F; Zhao LL; Li JH; Ma ZH; Wang HG Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):367-71. PubMed ID: 25970894 [TBL] [Abstract][Full Text] [Related]
18. Early Visual Detection of Wheat Stripe Rust Using Visible/Near-Infrared Hyperspectral Imaging. Yao Z; Lei Y; He D Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813434 [TBL] [Abstract][Full Text] [Related]
19. Classification of wheat diseases using deep learning networks with field and glasshouse images. Long M; Hartley M; Morris RJ; Brown JKM Plant Pathol; 2023 Apr; 72(3):536-547. PubMed ID: 38516179 [TBL] [Abstract][Full Text] [Related]
20. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]