These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 34883930)
1. An Explainable Machine Learning Model for Material Backorder Prediction in Inventory Management. Ntakolia C; Kokkotis C; Karlsson P; Moustakidis S Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883930 [TBL] [Abstract][Full Text] [Related]
2. QAmplifyNet: pushing the boundaries of supply chain backorder prediction using interpretable hybrid quantum-classical neural network. Jahin MA; Shovon MSH; Islam MS; Shin J; Mridha MF; Okuyama Y Sci Rep; 2023 Oct; 13(1):18246. PubMed ID: 37880386 [TBL] [Abstract][Full Text] [Related]
3. Smooth Bayesian network model for the prediction of future high-cost patients with COPD. Lin S; Zhang Q; Chen F; Luo L; Chen L; Zhang W Int J Med Inform; 2019 Jun; 126():147-155. PubMed ID: 31029256 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of explainable machine learning prediction models for hospital mortality. Stenwig E; Salvi G; Rossi PS; Skjærvold NK BMC Med Res Methodol; 2022 Feb; 22(1):53. PubMed ID: 35220950 [TBL] [Abstract][Full Text] [Related]
5. Explainable machine learning model to predict refeeding hypophosphatemia. Choi TY; Chang MY; Heo S; Jang JY Clin Nutr ESPEN; 2021 Oct; 45():213-219. PubMed ID: 34620320 [TBL] [Abstract][Full Text] [Related]
6. Development and head-to-head comparison of machine-learning models to identify patients requiring prostate biopsy. Yu S; Tao J; Dong B; Fan Y; Du H; Deng H; Cui J; Hong G; Zhang X BMC Urol; 2021 May; 21(1):80. PubMed ID: 33993876 [TBL] [Abstract][Full Text] [Related]
7. An extended EPQ-based problem with a discontinuous delivery policy, scrap rate, and random breakdown. Chiu SW; Lin HD; Song MS; Chen HM; Chiu YS ScientificWorldJournal; 2015; 2015():621978. PubMed ID: 25821853 [TBL] [Abstract][Full Text] [Related]
8. Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review. Adak A; Pradhan B; Shukla N Foods; 2022 May; 11(10):. PubMed ID: 35627070 [TBL] [Abstract][Full Text] [Related]
9. From demand forecasting to inventory ordering decisions for red blood cells through integrating machine learning, statistical modeling, and inventory optimization. Li N; Arnold DM; Down DG; Barty R; Blake J; Chiang F; Courtney T; Waito M; Trifunov R; Heddle NM Transfusion; 2022 Jan; 62(1):87-99. PubMed ID: 34784053 [TBL] [Abstract][Full Text] [Related]
10. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients]. Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290 [No Abstract] [Full Text] [Related]
11. Mathematical modeling for green supply chain considering product recovery capacity and uncertainty for demand. Mehrbakhsh S; Ghezavati V Environ Sci Pollut Res Int; 2020 Dec; 27(35):44378-44395. PubMed ID: 32767212 [TBL] [Abstract][Full Text] [Related]
12. Explainability-Informed Feature Selection and Performance Prediction for Nonintrusive Load Monitoring. Mollel RS; Stankovic L; Stankovic V Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430758 [TBL] [Abstract][Full Text] [Related]
13. Trade-off Predictivity and Explainability for Machine-Learning Powered Predictive Toxicology: An in-Depth Investigation with Tox21 Data Sets. Wu L; Huang R; Tetko IV; Xia Z; Xu J; Tong W Chem Res Toxicol; 2021 Feb; 34(2):541-549. PubMed ID: 33513003 [TBL] [Abstract][Full Text] [Related]
14. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data. Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589 [TBL] [Abstract][Full Text] [Related]
15. Machine learning approaches to predict peak demand days of cardiovascular admissions considering environmental exposure. Qiu H; Luo L; Su Z; Zhou L; Wang L; Chen Y BMC Med Inform Decis Mak; 2020 May; 20(1):83. PubMed ID: 32357880 [TBL] [Abstract][Full Text] [Related]
16. Predicting post-stroke pneumonia using deep neural network approaches. Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312 [TBL] [Abstract][Full Text] [Related]
17. Explainable Machine Learning Framework for Image Classification Problems: Case Study on Glioma Cancer Prediction. Pintelas E; Liaskos M; Livieris IE; Kotsiantis S; Pintelas P J Imaging; 2020 May; 6(6):. PubMed ID: 34460583 [TBL] [Abstract][Full Text] [Related]
18. Probabilistic multi-item inventory model with varying mixture shortage cost under restrictions. Fergany HA Springerplus; 2016; 5(1):1351. PubMed ID: 27588244 [TBL] [Abstract][Full Text] [Related]
19. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
20. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]