These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34883989)

  • 21. Performance of An Electromagnetic Energy Harvester with Linear and Nonlinear Springs under Real Vibrations.
    Phan TN; Bader S; Oelmann B
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the field homogeneity of fixed- and variable-diameter discrete Halbach magnet arrays for MRI via optimization of the angular magnetization distribution.
    Tewari S; O'Reilly T; Webb A
    J Magn Reson; 2021 Mar; 324():106923. PubMed ID: 33567389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body.
    Li X; Bi C; Li Z; Liu B; Wang T; Zhang S
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.
    Harne RL
    J Acoust Soc Am; 2012 Jul; 132(1):162-72. PubMed ID: 22779465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance.
    Bashyam A; Li M; Cima MJ
    J Magn Reson; 2018 Jul; 292():36-43. PubMed ID: 29763794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rigid-Flex PCB Technology with Embedded Fluidic Cavities and Its Application in Electromagnetic Energy Harvesters.
    Chiu Y; Hong HC
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Combination of a Vibrational Electromagnetic Energy Harvester and a Giant Magnetoimpedance (GMI) Sensor.
    Beato-López JJ; Royo-Silvestre I; Algueta-Miguel JM; Gómez-Polo C
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of vibration energy harvesters through a two-stage design: power production at single frequency excitation.
    Fernando JS; Sun Q
    Rev Sci Instrum; 2013 Nov; 84(11):114704. PubMed ID: 24289422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.
    Khan FU
    ScientificWorldJournal; 2016; 2016():3934289. PubMed ID: 27579343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.
    Turek K; Liszkowski P
    J Magn Reson; 2014 Jan; 238():52-62. PubMed ID: 24316186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-Low Frequency Eccentric Pendulum-Based Electromagnetic Vibrational Energy Harvester.
    Li M; Deng H; Zhang Y; Li K; Huang S; Liu X
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33207547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy.
    Zhou Z; Zhang H; Qin W; Zhu P; Wang P; Du W
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vibration Energy Harvester Based on Torsionally Oscillating Magnet.
    Wang X; Li J; Zhou C; Tao K; Qiao D; Li Y
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.
    Chung TK; Yeh PC; Lee H; Lin CM; Tseng CY; Lo WT; Wang CM; Wang WC; Tu CJ; Tasi PY; Chang JW
    Sensors (Basel); 2016 Feb; 16(3):269. PubMed ID: 26907297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Pendulum-like Low Frequency Electromagnetic Vibration Energy Harvester Based on Polymer Spring and Coils.
    Li Y; Wang X; Zhang S; Zhou C; Qiao D; Tao K
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation.
    Jung HY; Kim IH; Jung HJ
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29088077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling and Investigation of Energy Harvesting System Utilizing Magnetically Levitated Permanent Magnet.
    Bijak J; Trawiński T; Szczygieł M; Kowalik Z
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Automotive Ferrofluidic Electromagnetic System for Energy Harvesting and Adaptive Damping.
    Lenkutis T; Viržonis D; Čerškus A; Dzedzickis A; Šešok N; Bučinskas V
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The full phase space dynamics of a magnetically levitated electromagnetic vibration harvester.
    Jensen TW; Insinga AR; Ehlers JC; Bjørk R
    Sci Rep; 2021 Aug; 11(1):16607. PubMed ID: 34400665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.