These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34884083)
1. Development of a Hybrid Method to Generate Gravito-Inertial Cues for Motion Platforms in Highly Immersive Environments. Riera JV; Casas S; Fernández M; Alonso F; Useche SA Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884083 [TBL] [Abstract][Full Text] [Related]
2. Auto-Tuning parameters of motion cueing algorithms for high performance driving simulator based on Kuka Robocoaster. Pham DA; Nguyen DT Sci Prog; 2022; 105(2):368504221104333. PubMed ID: 35642264 [TBL] [Abstract][Full Text] [Related]
3. Facial Motion Capture System Based on Facial Electromyogram and Electrooculogram for Immersive Social Virtual Reality Applications. Kim C; Cha HS; Kim J; Kwak H; Lee W; Im CH Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050641 [TBL] [Abstract][Full Text] [Related]
4. Controlled Rotation of Human Observers in a Virtual Reality Environment. Falconbridge M; Falconbridge P; Badcock DR J Vis Exp; 2022 Apr; (182):. PubMed ID: 35532262 [TBL] [Abstract][Full Text] [Related]
5. Highly immersive virtual reality laparoscopy simulation: development and future aspects. Huber T; Wunderling T; Paschold M; Lang H; Kneist W; Hansen C Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):281-290. PubMed ID: 29151194 [TBL] [Abstract][Full Text] [Related]
6. Novel model predictive control-based motion cueing algorithm for compensating centrifugal acceleration in KUKA robocoaster-based driving simulators. Pham DA; Pham TN; Nguyen DT Sci Prog; 2023; 106(4):368504231204759. PubMed ID: 37787391 [TBL] [Abstract][Full Text] [Related]
8. Can We Study Autonomous Driving Comfort in Moving-Base Driving Simulators? A Validation Study. Bellem H; Klüver M; Schrauf M; Schöner HP; Hecht H; Krems JF Hum Factors; 2017 May; 59(3):442-456. PubMed ID: 28005453 [TBL] [Abstract][Full Text] [Related]
9. VRSA Net: VR Sickness Assessment Considering Exceptional Motion for 360° VR Video. Kim HG; Lim HT; Lee S; Ro YM IEEE Trans Image Process; 2019 Apr; 28(4):1646-1660. PubMed ID: 30418904 [TBL] [Abstract][Full Text] [Related]
10. FoV-NeRF: Foveated Neural Radiance Fields for Virtual Reality. Deng N; He Z; Ye J; Duinkharjav B; Chakravarthula P; Yang X; Sun Q IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3854-3864. PubMed ID: 36044494 [TBL] [Abstract][Full Text] [Related]
11. Optical and gravito-inertial contributions to the perception and control of height in a simulated Low-Altitude Flight context. Denquin F; Foucher J; Pla S; Sarrazin JC; Bardy BG Ergonomics; 2021 Oct; 64(10):1297-1309. PubMed ID: 33863267 [TBL] [Abstract][Full Text] [Related]
12. Neural processing of gravito-inertial cues in humans. II. Influence of the semicircular canals during eccentric rotation. Merfeld DM; Zupan LH; Gifford CA J Neurophysiol; 2001 Apr; 85(4):1648-60. PubMed ID: 11287488 [TBL] [Abstract][Full Text] [Related]
13. Neural processing of gravito-inertial cues in humans. IV. Influence of visual rotational cues during roll optokinetic stimuli. Zupan LH; Merfeld DM J Neurophysiol; 2003 Jan; 89(1):390-400. PubMed ID: 12522188 [TBL] [Abstract][Full Text] [Related]
14. Head positioning control in a gravito-inertial field and in normal gravity. Sarès F; Bourdin C; Prieur JM; Vercher JL; Menu JP; Gauthier GM J Vestib Res; 2004; 14(4):321-33. PubMed ID: 15328446 [TBL] [Abstract][Full Text] [Related]
15. Perceptual scaling of visual and inertial cues: effects of field of view, image size, depth cues, and degree of freedom. Correia Grácio BJ; Bos JE; van Paassen MM; Mulder M Exp Brain Res; 2014 Feb; 232(2):637-46. PubMed ID: 24292492 [TBL] [Abstract][Full Text] [Related]
16. Virtual reality tour for first-time users of highly automated cars: Comparing the effects of virtual environments with different levels of interaction fidelity. Ebnali M; Lamb R; Fathi R; Hulme K Appl Ergon; 2021 Jan; 90():103226. PubMed ID: 32818840 [TBL] [Abstract][Full Text] [Related]
17. Using EMG to anticipate head motion for virtual-environment applications. Barniv Y; Aguilar M; Hasanbelliu E IEEE Trans Biomed Eng; 2005 Jun; 52(6):1078-93. PubMed ID: 15977737 [TBL] [Abstract][Full Text] [Related]
18. Towards Virtual VATS, Face, and Construct Evaluation for Peg Transfer Training of Box, VR, AR, and MR Trainer. Qin Z; Tai Y; Xia C; Peng J; Huang X; Chen Z; Li Q; Shi J J Healthc Eng; 2019; 2019():6813719. PubMed ID: 30723539 [TBL] [Abstract][Full Text] [Related]
19. Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion. Fang W; Zheng L; Deng H; Zhang H Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28475145 [TBL] [Abstract][Full Text] [Related]
20. Get ready for automated driving using Virtual Reality. Sportillo D; Paljic A; Ojeda L Accid Anal Prev; 2018 Sep; 118():102-113. PubMed ID: 29890368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]