These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34884142)

  • 1. Evaluation of Ride Comfort in a Railway Passenger Car Depending on a Change of Suspension Parameters.
    Dižo J; Blatnický M; Gerlici J; Leitner B; Melnik R; Semenov S; Mikhailov E; Kostrzewski M
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ride comfort and segmental vibration transmissibility analysis of an automobile passenger model under whole body vibration.
    Guruguntla V; Lal M; Ghantasala GSP; Vidyullatha P; Alqahtani MS; Alsubaie N; Abbas M; Soufiene BO
    Sci Rep; 2023 Jul; 13(1):11619. PubMed ID: 37464006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying a PID-SMC synthetic control algorithm to the active suspension system to ensure road holding and ride comfort.
    Nguyen TA
    PLoS One; 2023; 18(10):e0283905. PubMed ID: 37856506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contemporary adaptive air suspension using LQR control for passenger vehicles.
    S GP; K MM
    ISA Trans; 2019 Oct; 93():244-254. PubMed ID: 30837128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods of Passenger Ride Comfort Evaluation-Tests for Metro Cars.
    Wawryszczuk R; Kardas-Cinal E; Lejk J; Sokołowski M
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference thresholds for a vehicle on a 4-poster test rig.
    Gräbe RP; Kat CJ; Jacobus van Staden P; Els PS
    Appl Ergon; 2020 Sep; 87():103115. PubMed ID: 32501247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Active Suspension System for Mitigating Motion Sickness and Enabling Reading in a Car.
    DiZio P; Ekchian J; Kaplan J; Ventura J; Graves W; Giovanardi M; Anderson Z; Lackner JR
    Aerosp Med Hum Perform; 2018 Sep; 89(9):822-829. PubMed ID: 30126515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on ride comfort optimization of the vehicle considering the subframe.
    Gao J; Du M
    Sci Prog; 2024; 107(3):368504241260272. PubMed ID: 39051503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of nonlinear quarter car suspension-seat-driver model.
    Nagarkar MP; Vikhe Patil GJ; Zaware Patil RN
    J Adv Res; 2016 Nov; 7(6):991-1007. PubMed ID: 27857846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ride comfort analysis with physiological parameters for an e-health train.
    Lee Y; Shin K; Lee S; Song Y; Han S; Lee M
    Telemed J E Health; 2009 Dec; 15(10):1010-21. PubMed ID: 20028192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and testing of suspension system of electric mini off-road vehicles.
    Yu B; Wang Z; Zhu D; Wang G; Xu D; Zhao J
    Sci Prog; 2020; 103(1):36850419881872. PubMed ID: 31829891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of measured accelerations from a passenger rail car to evaluate ride quality and track roughness - A case study.
    Haji Abdulrazagh P; Hendry MT; Gül M; Roghani A; Toma E
    Proc Inst Mech Eng F J Rail Rapid Transit; 2022 Jul; 236(6):733-742. PubMed ID: 35756887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride.
    Taskin Y; Hacioglu Y; Ortes F; Karabulut D; Arslan YZ
    Int J Occup Saf Ergon; 2019 Dec; 25(4):530-544. PubMed ID: 29252111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a Human Evaluator Model for the Ride Comfort of Vehicle on a Speed Bump Using a Neural Artistic Style Extraction.
    Kim D; Jeong M; Bae B; Ahn C
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layered energy-saving speed planning and control method for electric vehicle on continuous signal lights road.
    Jiao J; Zang L; Mao Y; Xue C; Peng X
    Heliyon; 2023 Nov; 9(11):e22352. PubMed ID: 38027953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on the Comfort of Vehicle Passengers Considering the Vehicle Motion State and Passenger Physiological Characteristics: Improving the Passenger Comfort of Autonomous Vehicles.
    Wang C; Zhao X; Fu R; Li Z
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32962050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring nonlinearity in quarter car models with an experimental approach to formulating fractional order form and its dynamic analysis.
    Molla T; Duraisamy P; Rajagopal K; Karthikeyan A; Boulaaras S
    Sci Rep; 2024 May; 14(1):12074. PubMed ID: 38802568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of bus passenger comfort perception based on passenger load factor and in-vehicle time.
    Shen X; Feng S; Li Z; Hu B
    Springerplus; 2016; 5():62. PubMed ID: 26839755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance analysis of a semiactive suspension system with particle swarm optimization and fuzzy logic control.
    Qazi AJ; de Silva CW; Khan A; Khan MT
    ScientificWorldJournal; 2014; 2014():174102. PubMed ID: 24574868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposing an original control algorithm for the active suspension system to improve vehicle vibration: Adaptive fuzzy sliding mode proportional-integral-derivative tuned by the fuzzy (AFSPIDF).
    Nguyen DN; Nguyen TA
    Heliyon; 2023 Mar; 9(3):e14210. PubMed ID: 36915482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.