BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34884164)

  • 1. Individual Tree Structural Parameter Extraction and Volume Table Creation Based on Near-Field LiDAR Data: A Case Study in a Subtropical Planted Forest.
    Gao S; Zhang Z; Cao L
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual tree segmentation of airborne and UAV LiDAR point clouds based on the watershed and optimized connection center evolution clustering.
    Li Y; Xie D; Wang Y; Jin S; Zhou K; Zhang Z; Li W; Zhang W; Mu X; Yan G
    Ecol Evol; 2023 Jul; 13(7):e10297. PubMed ID: 37456074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tree parameter extraction in
    Jiang Z; Chen J; Tang LY; Yu C; Xie RG; Huang DL; Su SD
    Ying Yong Sheng Tai Xue Bao; 2024 Feb; 35(2):321-329. PubMed ID: 38523088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual Tree Segmentation Method Based on Mobile Backpack LiDAR Point Clouds.
    Comesaña-Cebral L; Martínez-Sánchez J; Lorenzo H; Arias P
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].
    Liu F; Tan C; Lei PF
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3229-36. PubMed ID: 25898621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of unmanned aerial system structure from motion point cloud detected tree heights and stem diameters to model missing stem diameters.
    Swayze NC; Tinkham WT
    MethodsX; 2022; 9():101729. PubMed ID: 35664041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic extraction and measurement of individual trees from mobile laser scanning point clouds of forests.
    Bienert A; Georgi L; Kunz M; von Oheimb G; Maas HG
    Ann Bot; 2021 Oct; 128(6):787-804. PubMed ID: 34232276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.
    Brede B; Lau A; Bartholomeus HM; Kooistra L
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Feasibility of Modelling the Crown Profile of
    Quan Y; Li M; Zhen Z; Hao Y; Wang B
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability of personal laser scanning in forestry inventory.
    Chen S; Liu H; Feng Z; Shen C; Chen P
    PLoS One; 2019; 14(2):e0211392. PubMed ID: 30811414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for detecting individual trees in aerial LiDAR point clouds using absolute height maxima.
    Khorrami R; Naeimi Z; Tabari M; Eslahchi MR
    Environ Monit Assess; 2018 Nov; 190(12):708. PubMed ID: 30413891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species discrimination and individual tree detection for predicting main dendrometric characteristics in mixed temperate forests by use of airborne laser scanning and ultra-high-resolution imagery.
    Apostol B; Petrila M; Lorenţ A; Ciceu A; Gancz V; Badea O
    Sci Total Environ; 2020 Jan; 698():134074. PubMed ID: 31505359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated low-cost terrestrial laser scanner for measuring diameters at breast height and heights of plantation trees.
    Wang P; Li R; Bu G; Zhao R
    PLoS One; 2019; 14(1):e0209888. PubMed ID: 30653532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing and correcting topographic effects on forest canopy height retrieval using airborne LiDAR data.
    Duan Z; Zhao D; Zeng Y; Zhao Y; Wu B; Zhu J
    Sensors (Basel); 2015 May; 15(6):12133-55. PubMed ID: 26016907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UAV hyperspectral combined with LiDAR to estimate chlorophyll content at the stand and individual tree scales.
    Yang T; Yu Y; Yang XG; DU HX
    Ying Yong Sheng Tai Xue Bao; 2023 Aug; 34(8):2101-2112. PubMed ID: 37681374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of tree species based on the fusion of UAV hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in Northeast China.
    Zhong H; Lin W; Liu H; Ma N; Liu K; Cao R; Wang T; Ren Z
    Front Plant Sci; 2022; 13():964769. PubMed ID: 36212338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understory biomass measurement in a dense plantation forest based on drone-SfM data by a manual low-flying drone under the canopy.
    Zhang Y; Onda Y; Kato H; Feng B; Gomi T
    J Environ Manage; 2022 Jun; 312():114862. PubMed ID: 35344876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Competition of key tree species with selective cutting at different intensities in broadleaved-korean pine mixed forest in the Changbai Mountain, China.].
    Tang Y; Chen H; Tong YW; Zhu Q; Zhou WM; Zhou L; Dai LM; Yu DP
    Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1469-1478. PubMed ID: 31107001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critique of general allometry-inspired models for estimating forest carbon density from airborne LiDAR.
    Spriggs RA; Vanderwel MC; Jones TA; Caspersen JP; Coomes DA
    PLoS One; 2019; 14(4):e0215238. PubMed ID: 31002682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-Scale Quantification of Absorbed Photosynthetically Active Radiation (APAR) in Plantation Forests with 3D Radiative Transfer Modeling and LiDAR Data.
    Zhao X; Qi J; Yu Z; Yuan L; Huang H
    Plant Phenomics; 2024; 6():0166. PubMed ID: 38590393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.