These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34884427)

  • 1. A Comparison of the Effect of Lead (Pb) on the Slow Vacuolar (SV) and Fast Vacuolar (FV) Channels in Red Beet (
    Siemieniuk A; Burdach Z; Karcz W
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Auxin (IAA) on the Fast Vacuolar (FV) Channels in Red Beet (
    Burdach Z; Siemieniuk A; Karcz W
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium.
    Allen GJ; Sanders D
    Plant J; 1996 Dec; 10(6):1055-69. PubMed ID: 9011087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of auxin (IAA) in the regulation of slow vacuolar (SV) channels and the volume of red beet taproot vacuoles.
    Burdach Z; Siemieniuk A; Trela Z; Kurtyka R; Karcz W
    BMC Plant Biol; 2018 Jun; 18(1):102. PubMed ID: 29866031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Trimethyltin Chloride on Slow Vacuolar (SV) Channels in Vacuoles from Red Beet (Beta vulgaris L.) Taproots.
    Trela Z; Burdach Z; Siemieniuk A; Przestalski S; Karcz W
    PLoS One; 2015; 10(8):e0136346. PubMed ID: 26317868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of trimethyllead chloride on slowly activating (SV) channels in red beet (Beta vulgaris L.) taproots.
    Trela Z; Burdach Z; Przestalski S; Karcz W
    C R Biol; 2012 Dec; 335(12):722-30. PubMed ID: 23312295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the fast vacuolar channel by cytosolic and vacuolar potassium.
    Pottosin II; Martínez-Estévez M
    Biophys J; 2003 Feb; 84(2 Pt 1):977-86. PubMed ID: 12547779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels.
    Pottosin II; Martínez-Estévez M; Dobrovinskaya OR; Muñiz J; Schönknecht G
    Planta; 2004 Oct; 219(6):1057-70. PubMed ID: 15605179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacuolar ion channels in the liverwort Marchantia polymorpha: influence of ion channel inhibitors.
    Koselski M; Trebacz K; Dziubinska H
    Planta; 2017 May; 245(5):1049-1060. PubMed ID: 28197715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation-permeable vacuolar ion channels in the moss Physcomitrella patens: a patch-clamp study.
    Koselski M; Trebacz K; Dziubinska H
    Planta; 2013 Aug; 238(2):357-67. PubMed ID: 23716185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ.
    Pérez V; Wherrett T; Shabala S; Muñiz J; Dobrovinskaya O; Pottosin I
    J Exp Bot; 2008; 59(14):3845-55. PubMed ID: 18832189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium-selective channel in the red beet vacuolar membrane.
    Pottosin II; Martínez-Estévez M; Dobrovinskaya OR; Muñiz J
    J Exp Bot; 2003 Feb; 54(383):663-7. PubMed ID: 12554709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifractal Analysis of the Influence of Indole-3-Acetic Acid on Fast-Activating Vacuolar (FV) Channels of
    Miśkiewicz J; Burdach Z; Trela Z; Siemieniuk A; Karcz W
    Membranes (Basel); 2023 Apr; 13(4):. PubMed ID: 37103833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium Sensitizes Slow Vacuolar Channels to Physiological Cytosolic Calcium and Inhibits Fast Vacuolar Channels in Fava Bean Guard Cell Vacuoles.
    Pei ZM; Ward JM; Schroeder JI
    Plant Physiol; 1999 Nov; 121(3):977-986. PubMed ID: 10557247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels.
    Ivashikina N; Hedrich R
    Plant J; 2005 Feb; 41(4):606-14. PubMed ID: 15686523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the slow vacuolar channel by luminal potassium: role of surface charge.
    Pottosin II; Martínez-Estévez M; Dobrovinskaya OR; Muñiz J
    J Membr Biol; 2005 May; 205(2):103-11. PubMed ID: 16283590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts.
    Hamamoto S; Marui J; Matsuoka K; Higashi K; Igarashi K; Nakagawa T; Kuroda T; Mori Y; Murata Y; Nakanishi Y; Maeshima M; Yabe I; Uozumi N
    J Biol Chem; 2008 Jan; 283(4):1911-20. PubMed ID: 18029350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence combined with excised patch: measuring calcium currents in plant cation channels.
    Gradogna A; Scholz-Starke J; Gutla PV; Carpaneto A
    Plant J; 2009 Apr; 58(1):175-82. PubMed ID: 19067975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choline but not its derivative betaine blocks slow vacuolar channels in the halophyte Chenopodium quinoa: implications for salinity stress responses.
    Pottosin I; Bonales-Alatorre E; Shabala S
    FEBS Lett; 2014 Nov; 588(21):3918-23. PubMed ID: 25240200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa.
    Bonales-Alatorre E; Shabala S; Chen ZH; Pottosin I
    Plant Physiol; 2013 Jun; 162(2):940-52. PubMed ID: 23624857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.