BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34884464)

  • 1. The Significance of Biomechanics and Scaffold Structure for Bladder Tissue Engineering.
    Hanczar M; Moazen M; Day R
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder.
    Ajalloueian F; Lemon G; Hilborn J; Chronakis IS; Fossum M
    Nat Rev Urol; 2018 Mar; 15(3):155-174. PubMed ID: 29434369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffolds for whole organ tissue engineering: Construction and in vitro evaluation of a seamless, spherical and hollow collagen bladder construct with appendices.
    Hoogenkamp HR; Pot MW; Hafmans TG; Tiemessen DM; Sun Y; Oosterwijk E; Feitz WF; Daamen WF; van Kuppevelt TH
    Acta Biomater; 2016 Oct; 43():112-121. PubMed ID: 27424084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human urinary bladder regeneration through tissue engineering - an analysis of 131 clinical cases.
    Pokrywczynska M; Adamowicz J; Sharma AK; Drewa T
    Exp Biol Med (Maywood); 2014 Mar; 239(3):264-71. PubMed ID: 24419462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder.
    Sharma S; Basu B
    Biomaterials; 2022 Feb; 281():121331. PubMed ID: 35016066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineering Approaches for Bladder Regeneration.
    Serrano-Aroca Á; Vera-Donoso CD; Moreno-Manzano V
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29914213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional biomechanical and histological characterisation of the passive porcine urinary bladder: Implications for augmentation and tissue engineering strategies.
    Korossis S; Bolland F; Southgate J; Ingham E; Fisher J
    Biomaterials; 2009 Jan; 30(2):266-75. PubMed ID: 18926570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds.
    Soares JS; Zhang W; Sacks MS
    Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porcine extracellular matrix scaffolds in reconstructive urology: An ex vivo comparative study of their biomechanical properties.
    Davis NF; Callanan A; McGuire BB; Mooney R; Flood HD; McGloughlin TM
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):375-82. PubMed ID: 21316625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Tissue engineering in urology, new approaches for urinary bladder reconstruction].
    Murav'ev AN; Orlova NV; Blinova MI; Iudintseva NM
    Tsitologiia; 2015; 57(1):14-8. PubMed ID: 25872371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extension of bladder-based organ regeneration platform for tissue engineering of esophagus.
    Basu J; Mihalko KL; Payne R; Rivera E; Knight T; Genheimer CW; Guthrie KI; Sangha N; Jayo MJ; Jain D; Bertram TA; Ludlow JW
    Med Hypotheses; 2012 Feb; 78(2):231-4. PubMed ID: 22100629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of manipulation of silk scaffold fabrication parameters on matrix performance in a murine model of bladder augmentation.
    Gomez P; Gil ES; Lovett ML; Rockwood DN; Di Vizio D; Kaplan DL; Adam RM; Estrada CR; Mauney JR
    Biomaterials; 2011 Oct; 32(30):7562-70. PubMed ID: 21764119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urinary Bladder vs Gastrointestinal Tissue: A Comparative Study of Their Biomechanical Properties for Urinary Tract Reconstruction.
    Davis NF; Mulvihill JJE; Mulay S; Cunnane EM; Bolton DM; Walsh MT
    Urology; 2018 Mar; 113():235-240. PubMed ID: 29197522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of biomaterials for bladder augmentation using cystometric analyses in various rodent models.
    Tu DD; Seth A; Gil ES; Kaplan DL; Mauney JR; Estrada CR
    J Vis Exp; 2012 Aug; (66):. PubMed ID: 22907252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bladder tissue engineering through nanotechnology.
    Harrington DA; Sharma AK; Erickson BA; Cheng EY
    World J Urol; 2008 Aug; 26(4):315-22. PubMed ID: 18536880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bladder wall biomechanics: A comprehensive study on fresh porcine urinary bladder.
    Jokandan MS; Ajalloueian F; Edinger M; Stubbe PR; Baldursdottir S; Chronakis IS
    J Mech Behav Biomed Mater; 2018 Mar; 79():92-103. PubMed ID: 29287227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Advance in functional bladder engineering].
    Zhang X; Chen Q; Zhang Y; Xie H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):200-206. PubMed ID: 32329269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction.
    Korossis S; Bolland F; Ingham E; Fisher J; Kearney J; Southgate J
    Tissue Eng; 2006 Apr; 12(4):635-44. PubMed ID: 16674279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.