BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 34884469)

  • 1. C57BL/6 Background Attenuates mHTT Toxicity in the Striatum of YAC128 Mice.
    Back MK; Kurzawa J; Ruggieri S; von Engelhardt J
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.
    Wu J; Ryskamp DA; Liang X; Egorova P; Zakharova O; Hung G; Bezprozvanny I
    J Neurosci; 2016 Jan; 36(1):125-41. PubMed ID: 26740655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
    Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I
    Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering cortical input unmasks synaptic phenotypes in the YAC128 cortico-striatal co-culture model of Huntington disease.
    Schmidt ME; Buren C; Mackay JP; Cheung D; Dal Cengio L; Raymond LA; Hayden MR
    BMC Biol; 2018 Jun; 16(1):58. PubMed ID: 29945611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity.
    Cowan CM; Fan MM; Fan J; Shehadeh J; Zhang LY; Graham RK; Hayden MR; Raymond LA
    J Neurosci; 2008 Nov; 28(48):12725-35. PubMed ID: 19036965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease.
    Cummings DM; Cepeda C; Levine MS
    ASN Neuro; 2010 Jun; 2(3):e00036. PubMed ID: 20585470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similar striatal gene expression profiles in the striatum of the YAC128 and HdhQ150 mouse models of Huntington's disease are not reflected in mutant Huntingtin inclusion prevalence.
    Bayram-Weston Z; Stone TC; Giles P; Elliston L; Janghra N; Higgs GV; Holmans PA; Dunnett SB; Brooks SP; Jones L
    BMC Genomics; 2015 Dec; 16():1079. PubMed ID: 26691352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease.
    Fan J; Gladding CM; Wang L; Zhang LY; Kaufman AM; Milnerwood AJ; Raymond LA
    Neurobiol Dis; 2012 Mar; 45(3):999-1009. PubMed ID: 22198502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model.
    Kolodziejczyk K; Raymond LA
    Neurobiol Dis; 2016 Feb; 86():62-74. PubMed ID: 26621114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice.
    Milnerwood AJ; Kaufman AM; Sepers MD; Gladding CM; Zhang L; Wang L; Fan J; Coquinco A; Qiao JY; Lee H; Wang YT; Cynader M; Raymond LA
    Neurobiol Dis; 2012 Oct; 48(1):40-51. PubMed ID: 22668780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p35 hemizygosity activates Akt but does not improve motor function in the YAC128 mouse model of Huntington's disease.
    Park KHJ; Franciosi S; Parrant K; Lu G; Leavitt BR
    Neuroscience; 2017 Jun; 352():79-87. PubMed ID: 28391013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model.
    Gladding CM; Fan J; Zhang LY; Wang L; Xu J; Li EH; Lombroso PJ; Raymond LA
    J Neurochem; 2014 Jul; 130(1):145-59. PubMed ID: 24588402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative metabolism and Ca
    Hamilton J; Brustovetsky T; Brustovetsky N
    Neurochem Int; 2017 Oct; 109():24-33. PubMed ID: 28062223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional features of medium spiny neurons in the BACHDΔN17 mouse model of Huntington's Disease.
    Goodliffe J; Rubakovic A; Chang W; Pathak D; Luebke J
    PLoS One; 2020; 15(6):e0234394. PubMed ID: 32574176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington's disease YAC128 mice.
    Jeon J; Kim W; Jang J; Isacson O; Seo H
    Neuroscience; 2016 Jun; 324():20-8. PubMed ID: 26944602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of subventricular zone-derived progenitor cells from mild and late symptomatic YAC128 mouse model of Huntington's disease.
    Silva AC; Ferreira IL; Hayden MR; Ferreiro E; Rego AC
    Biochim Biophys Acta Mol Basis Dis; 2018 Jan; 1864(1):34-44. PubMed ID: 28939435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model.
    Chen X; Wu J; Lvovskaya S; Herndon E; Supnet C; Bezprozvanny I
    Mol Neurodegener; 2011 Nov; 6():81. PubMed ID: 22118545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of TRPC1-Dependent Store-Operated Calcium Entry Improves Synaptic Stability and Motor Performance in a Mouse Model of Huntington's Disease.
    Wu J; Ryskamp D; Birnbaumer L; Bezprozvanny I
    J Huntingtons Dis; 2018; 7(1):35-50. PubMed ID: 29480205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington's disease.
    Pellman JJ; Hamilton J; Brustovetsky T; Brustovetsky N
    J Neurochem; 2015 Aug; 134(4):652-67. PubMed ID: 25963273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural stem cells derived from the developing forebrain of YAC128 mice exhibit pathological features of Huntington's disease.
    Li E; Park HR; Hong CP; Kim Y; Choi J; Lee S; Park HJ; Lee B; Kim TA; Kim SJ; Kim HS; Song J
    Cell Prolif; 2020 Oct; 53(10):e12893. PubMed ID: 32865873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.