These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 34884469)
1. C57BL/6 Background Attenuates mHTT Toxicity in the Striatum of YAC128 Mice. Back MK; Kurzawa J; Ruggieri S; von Engelhardt J Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884469 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model. Wu J; Ryskamp DA; Liang X; Egorova P; Zakharova O; Hung G; Bezprozvanny I J Neurosci; 2016 Jan; 36(1):125-41. PubMed ID: 26740655 [TBL] [Abstract][Full Text] [Related]
3. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655 [TBL] [Abstract][Full Text] [Related]
4. Altering cortical input unmasks synaptic phenotypes in the YAC128 cortico-striatal co-culture model of Huntington disease. Schmidt ME; Buren C; Mackay JP; Cheung D; Dal Cengio L; Raymond LA; Hayden MR BMC Biol; 2018 Jun; 16(1):58. PubMed ID: 29945611 [TBL] [Abstract][Full Text] [Related]
5. Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity. Cowan CM; Fan MM; Fan J; Shehadeh J; Zhang LY; Graham RK; Hayden MR; Raymond LA J Neurosci; 2008 Nov; 28(48):12725-35. PubMed ID: 19036965 [TBL] [Abstract][Full Text] [Related]
6. Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease. Cummings DM; Cepeda C; Levine MS ASN Neuro; 2010 Jun; 2(3):e00036. PubMed ID: 20585470 [TBL] [Abstract][Full Text] [Related]
7. Similar striatal gene expression profiles in the striatum of the YAC128 and HdhQ150 mouse models of Huntington's disease are not reflected in mutant Huntingtin inclusion prevalence. Bayram-Weston Z; Stone TC; Giles P; Elliston L; Janghra N; Higgs GV; Holmans PA; Dunnett SB; Brooks SP; Jones L BMC Genomics; 2015 Dec; 16():1079. PubMed ID: 26691352 [TBL] [Abstract][Full Text] [Related]
8. P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease. Fan J; Gladding CM; Wang L; Zhang LY; Kaufman AM; Milnerwood AJ; Raymond LA Neurobiol Dis; 2012 Mar; 45(3):999-1009. PubMed ID: 22198502 [TBL] [Abstract][Full Text] [Related]
9. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model. Kolodziejczyk K; Raymond LA Neurobiol Dis; 2016 Feb; 86():62-74. PubMed ID: 26621114 [TBL] [Abstract][Full Text] [Related]
10. Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice. Milnerwood AJ; Kaufman AM; Sepers MD; Gladding CM; Zhang L; Wang L; Fan J; Coquinco A; Qiao JY; Lee H; Wang YT; Cynader M; Raymond LA Neurobiol Dis; 2012 Oct; 48(1):40-51. PubMed ID: 22668780 [TBL] [Abstract][Full Text] [Related]
11. p35 hemizygosity activates Akt but does not improve motor function in the YAC128 mouse model of Huntington's disease. Park KHJ; Franciosi S; Parrant K; Lu G; Leavitt BR Neuroscience; 2017 Jun; 352():79-87. PubMed ID: 28391013 [TBL] [Abstract][Full Text] [Related]
12. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model. Gladding CM; Fan J; Zhang LY; Wang L; Xu J; Li EH; Lombroso PJ; Raymond LA J Neurochem; 2014 Jul; 130(1):145-59. PubMed ID: 24588402 [TBL] [Abstract][Full Text] [Related]
13. Oxidative metabolism and Ca Hamilton J; Brustovetsky T; Brustovetsky N Neurochem Int; 2017 Oct; 109():24-33. PubMed ID: 28062223 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional features of medium spiny neurons in the BACHDΔN17 mouse model of Huntington's Disease. Goodliffe J; Rubakovic A; Chang W; Pathak D; Luebke J PLoS One; 2020; 15(6):e0234394. PubMed ID: 32574176 [TBL] [Abstract][Full Text] [Related]
15. Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington's disease YAC128 mice. Jeon J; Kim W; Jang J; Isacson O; Seo H Neuroscience; 2016 Jun; 324():20-8. PubMed ID: 26944602 [TBL] [Abstract][Full Text] [Related]
16. Characterization of subventricular zone-derived progenitor cells from mild and late symptomatic YAC128 mouse model of Huntington's disease. Silva AC; Ferreira IL; Hayden MR; Ferreiro E; Rego AC Biochim Biophys Acta Mol Basis Dis; 2018 Jan; 1864(1):34-44. PubMed ID: 28939435 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of TRPC1-Dependent Store-Operated Calcium Entry Improves Synaptic Stability and Motor Performance in a Mouse Model of Huntington's Disease. Wu J; Ryskamp D; Birnbaumer L; Bezprozvanny I J Huntingtons Dis; 2018; 7(1):35-50. PubMed ID: 29480205 [TBL] [Abstract][Full Text] [Related]
19. Ca(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington's disease. Pellman JJ; Hamilton J; Brustovetsky T; Brustovetsky N J Neurochem; 2015 Aug; 134(4):652-67. PubMed ID: 25963273 [TBL] [Abstract][Full Text] [Related]
20. Neural stem cells derived from the developing forebrain of YAC128 mice exhibit pathological features of Huntington's disease. Li E; Park HR; Hong CP; Kim Y; Choi J; Lee S; Park HJ; Lee B; Kim TA; Kim SJ; Kim HS; Song J Cell Prolif; 2020 Oct; 53(10):e12893. PubMed ID: 32865873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]