These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 34884688)
1. Unsupervised Representation Learning for Proteochemometric Modeling. Kim PT; Winter R; Clevert DA Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884688 [TBL] [Abstract][Full Text] [Related]
2. How to approach machine learning-based prediction of drug/compound-target interactions. Atas Guvenilir H; Doğan T J Cheminform; 2023 Feb; 15(1):16. PubMed ID: 36747300 [TBL] [Abstract][Full Text] [Related]
3. Using molecular embeddings in QSAR modeling: does it make a difference? Sabando MV; Ponzoni I; Milios EE; Soto AJ Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34498670 [TBL] [Abstract][Full Text] [Related]
4. Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. Jaeger S; Fulle S; Turk S J Chem Inf Model; 2018 Jan; 58(1):27-35. PubMed ID: 29268609 [TBL] [Abstract][Full Text] [Related]
5. Transfer learning in proteins: evaluating novel protein learned representations for bioinformatics tasks. Fenoy E; Edera AA; Stegmayer G Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35758229 [TBL] [Abstract][Full Text] [Related]
6. Adverse Drug Event Prediction Using Noisy Literature-Derived Knowledge Graphs: Algorithm Development and Validation. Dasgupta S; Jayagopal A; Jun Hong AL; Mariappan R; Rajan V JMIR Med Inform; 2021 Oct; 9(10):e32730. PubMed ID: 34694230 [TBL] [Abstract][Full Text] [Related]
7. The application of chemical similarity measures in an unconventional modeling framework c-RASAR along with dimensionality reduction techniques to a representative hepatotoxicity dataset. Banerjee A; Roy K Sci Rep; 2024 Sep; 14(1):20812. PubMed ID: 39242880 [TBL] [Abstract][Full Text] [Related]
8. The recent progress in proteochemometric modelling: focusing on target descriptors, cross-term descriptors and application scope. Qiu T; Qiu J; Feng J; Wu D; Yang Y; Tang K; Cao Z; Zhu R Brief Bioinform; 2017 Jan; 18(1):125-136. PubMed ID: 26873661 [TBL] [Abstract][Full Text] [Related]
9. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery. Li Z; Huang R; Xia M; Patterson TA; Hong H Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672 [TBL] [Abstract][Full Text] [Related]
10. Learning Molecular Representations for Medicinal Chemistry. Chuang KV; Gunsalus LM; Keiser MJ J Med Chem; 2020 Aug; 63(16):8705-8722. PubMed ID: 32366098 [TBL] [Abstract][Full Text] [Related]
11. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Rives A; Meier J; Sercu T; Goyal S; Lin Z; Liu J; Guo D; Ott M; Zitnick CL; Ma J; Fergus R Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33876751 [TBL] [Abstract][Full Text] [Related]
12. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction. Liu X; Feng H; Wu J; Xia K Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771 [TBL] [Abstract][Full Text] [Related]
13. Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry. Polanski J Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269939 [TBL] [Abstract][Full Text] [Related]
14. Unsupervised Sentence Representation Learning with Frequency-induced Adversarial tuning and Incomplete sentence filtering. Wang B; Li X; Yang Z; Guan Y; Li J; Wang S Neural Netw; 2024 Jul; 175():106315. PubMed ID: 38626618 [TBL] [Abstract][Full Text] [Related]
15. Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning. Sadeghi Z; Testolin A Cogn Process; 2017 Aug; 18(3):273-284. PubMed ID: 28238168 [TBL] [Abstract][Full Text] [Related]
16. InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein-Ligand Interaction Predictions. Jiang D; Hsieh CY; Wu Z; Kang Y; Wang J; Wang E; Liao B; Shen C; Xu L; Wu J; Cao D; Hou T J Med Chem; 2021 Dec; 64(24):18209-18232. PubMed ID: 34878785 [TBL] [Abstract][Full Text] [Related]
17. Active Site Sequence Representations of Human Kinases Outperform Full Sequence Representations for Affinity Prediction and Inhibitor Generation: 3D Effects in a 1D Model. Born J; Huynh T; Stroobants A; Cornell WD; Manica M J Chem Inf Model; 2022 Jan; 62(2):240-257. PubMed ID: 34905358 [TBL] [Abstract][Full Text] [Related]
18. Radiomics analysis combining unsupervised learning and handcrafted features: A multiple-disease study. Wan Y; Yang P; Xu L; Yang J; Luo C; Wang J; Chen F; Wu Y; Lu Y; Ruan D; Niu T Med Phys; 2021 Nov; 48(11):7003-7015. PubMed ID: 34453332 [TBL] [Abstract][Full Text] [Related]
19. Computational representations of protein-ligand interfaces for structure-based virtual screening. Qin T; Zhu Z; Wang XS; Xia J; Wu S Expert Opin Drug Discov; 2021 Oct; 16(10):1175-1192. PubMed ID: 34011222 [No Abstract] [Full Text] [Related]
20. Learned protein embeddings for machine learning. Yang KK; Wu Z; Bedbrook CN; Arnold FH Bioinformatics; 2018 Aug; 34(15):2642-2648. PubMed ID: 29584811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]