These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34884707)

  • 1. A Lumenal Loop Associated with Catalytic Asymmetry in Plant Vacuolar H
    Anashkin VA; Baykov AA
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Asymmetry in Homodimeric H
    Anashkin VA; Malinen AM; Bogachev AV; Baykov AA
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the critical residues for the function of vacuolar H⁺-pyrophosphatase by mutational analysis based on the 3D structure.
    Asaoka M; Segami S; Maeshima M
    J Biochem; 2014 Dec; 156(6):333-44. PubMed ID: 25070903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the potassium/lysine cationic center in catalysis and functional asymmetry in membrane-bound pyrophosphatases.
    Artukka E; Luoto HH; Baykov AA; Lahti R; Malinen AM
    Biochem J; 2018 Mar; 475(6):1141-1158. PubMed ID: 29519958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a membrane-embedded H+-translocating pyrophosphatase.
    Lin SM; Tsai JY; Hsiao CD; Huang YT; Chiu CL; Liu MH; Tung JY; Liu TH; Pan RL; Sun YJ
    Nature; 2012 Mar; 484(7394):399-403. PubMed ID: 22456709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mechanism of Energy Coupling in H
    Baykov AA; Anashkin VA; Malinen AM; Bogachev AV
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-induced changes in domain interaction of vacuolar H⁺-pyrophosphatase.
    Hsu SH; Lo YY; Liu TH; Pan YJ; Huang YT; Sun YJ; Hung CC; Tseng FG; Yang CW; Pan RL
    J Biol Chem; 2015 Jan; 290(2):1197-209. PubMed ID: 25451931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the mechanism of membrane pyrophosphatases by combining experiment and computer simulation.
    Shah NR; Wilkinson C; Harborne SP; Turku A; Li KM; Sun YJ; Harris S; Goldman A
    Struct Dyn; 2017 May; 4(3):032105. PubMed ID: 28345008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+.
    Luoto HH; Baykov AA; Lahti R; Malinen AM
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1255-60. PubMed ID: 23297210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical, Structural and Physiological Characteristics of Vacuolar H+-Pyrophosphatase.
    Segami S; Asaoka M; Kinoshita S; Fukuda M; Nakanishi Y; Maeshima M
    Plant Cell Physiol; 2018 Jul; 59(7):1300-1308. PubMed ID: 29534212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of a carboxylic residue possibly involved in the inhibition of vacuolar H+-pyrophosphatase by N, N'-dicyclohexylcarbodi-imide.
    Yang SJ; Jiang SS; Kuo SY; Hung SH; Tam MF; Pan RL
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):641-6. PubMed ID: 10477275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the reversibility of proton pyrophosphatase.
    Regmi KC; Pizzio GA; Gaxiola RA
    Plant Signal Behav; 2016 Oct; 11(10):e1231294. PubMed ID: 27611445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vacuolar H(+)-pyrophosphatase.
    Maeshima M
    Biochim Biophys Acta; 2000 May; 1465(1-2):37-51. PubMed ID: 10748246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-steady-state kinetics and solvent isotope effects support the "billiard-type" transport mechanism in Na
    Malinen AM; Anashkin VA; Orlov VN; Bogachev AV; Lahti R; Baykov AA
    Protein Sci; 2022 Sep; 31(9):e4394. PubMed ID: 36040263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The H(+)-pumping inorganic pyrophosphatase of the vacuolar membrane of higher plants.
    Leigh RA; Gordon-Weeks R; Steele SH; Koren'kov VD
    Symp Soc Exp Biol; 1994; 48():61-75. PubMed ID: 7597650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase.
    Van RC; Pan YJ; Hsu SH; Huang YT; Hsiao YY; Pan RL
    Biochim Biophys Acta; 2005 Aug; 1709(1):84-94. PubMed ID: 16018964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion mutation analysis on C-terminal domain of plant vacuolar H(+)-pyrophosphatase.
    Lin HH; Pan YJ; Hsu SH; Van RC; Hsiao YY; Chen JH; Pan RL
    Arch Biochem Biophys; 2005 Oct; 442(2):206-13. PubMed ID: 16185650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase.
    Nakanishi Y; Saijo T; Wada Y; Maeshima M
    J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies.
    Takasu A; Nakanishi Y; Yamauchi T; Maeshima M
    J Biochem; 1997 Oct; 122(4):883-9. PubMed ID: 9399596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional investigation of transmembrane helix 3 in H⁺-translocating pyrophosphatase.
    Lee CH; Chen YW; Huang YT; Pan YJ; Lee CH; Lin SM; Huang LK; Lo YY; Huang YF; Hsu YD; Yen SC; Hwang JK; Pan RL
    J Membr Biol; 2013 Dec; 246(12):959-66. PubMed ID: 24121627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.