BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 34884729)

  • 21. Altered DNA base excision repair profile in brain tissue and blood in Alzheimer's disease.
    Lillenes MS; Rabano A; Støen M; Riaz T; Misaghian D; Møllersen L; Esbensen Y; Günther CC; Selnes P; Stenset VT; Fladby T; Tønjum T
    Mol Brain; 2016 May; 9(1):61. PubMed ID: 27234294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases.
    Prorok P; Grin IR; Matkarimov BT; Ishchenko AA; Laval J; Zharkov DO; Saparbaev M
    Cells; 2021 Jun; 10(7):. PubMed ID: 34202661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. OGG1 in the Kidney: Beyond Base Excision Repair.
    Zhao F; Zhu J; Shi L; Wu X
    Oxid Med Cell Longev; 2022; 2022():5774641. PubMed ID: 36620083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases MUTYH and hOGG1 in Colorectal Cancer Patients.
    Kavec MJ; Urbanova M; Makovicky P; Opattová A; Tomasova K; Kroupa M; Kostovcikova K; Siskova A; Navvabi N; Schneiderova M; Vymetalkova V; Vodickova L; Vodicka P
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NEIL1 excises 3' end proximal oxidative DNA lesions resistant to cleavage by NTH1 and OGG1.
    Parsons JL; Zharkov DO; Dianov GL
    Nucleic Acids Res; 2005; 33(15):4849-56. PubMed ID: 16129732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis.
    Hassim F; Papadopoulos AO; Kana BD; Gordhan BG
    Mutat Res; 2015 Sep; 779():24-32. PubMed ID: 26125998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases.
    Hegde ML; Mantha AK; Hazra TK; Bhakat KK; Mitra S; Szczesny B
    Mech Ageing Dev; 2012 Apr; 133(4):157-68. PubMed ID: 22313689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential Ability of Five DNA Glycosylases to Recognize and Repair Damage on Nucleosomal DNA.
    Olmon ED; Delaney S
    ACS Chem Biol; 2017 Mar; 12(3):692-701. PubMed ID: 28085251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibitors of DNA Glycosylases as Prospective Drugs.
    Mechetin GV; Endutkin AV; Diatlova EA; Zharkov DO
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32354123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced expression of DNA glycosylases in post-hypoxic newborn pigs undergoing therapeutic hypothermia.
    Dalen ML; Alme TN; Bjørås M; Munkeby BH; Rootwelt T; Saugstad OD
    Brain Res; 2010 Dec; 1363():198-205. PubMed ID: 20883672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single nucleotide polymorphisms in DNA glycosylases: From function to disease.
    D'Errico M; Parlanti E; Pascucci B; Fortini P; Baccarini S; Simonelli V; Dogliotti E
    Free Radic Biol Med; 2017 Jun; 107():278-291. PubMed ID: 27932076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Base Excision Repair in the Mitochondria.
    Prakash A; Doublié S
    J Cell Biochem; 2015 Aug; 116(8):1490-9. PubMed ID: 25754732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specific Inhibition of NEIL-initiated repair of oxidized base damage in human genome by copper and iron: potential etiological linkage to neurodegenerative diseases.
    Hegde ML; Hegde PM; Holthauzen LM; Hazra TK; Rao KS; Mitra S
    J Biol Chem; 2010 Sep; 285(37):28812-25. PubMed ID: 20622253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inactivation of a common OGG1 variant by TNF-alpha in mammalian cells.
    Morreall J; Limpose K; Sheppard C; Kow YW; Werner E; Doetsch PW
    DNA Repair (Amst); 2015 Feb; 26():15-22. PubMed ID: 25534136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage.
    Svilar D; Goellner EM; Almeida KH; Sobol RW
    Antioxid Redox Signal; 2011 Jun; 14(12):2491-507. PubMed ID: 20649466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repair of oxidative DNA damage: mechanisms and functions.
    Lu AL; Li X; Gu Y; Wright PM; Chang DY
    Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced sensitivity of Neil1
    Calkins MJ; Vartanian V; Owen N; Kirkali G; Jaruga P; Dizdaroglu M; McCullough AK; Lloyd RS
    DNA Repair (Amst); 2016 Dec; 48():43-50. PubMed ID: 27818081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark?
    Seifermann M; Epe B
    Free Radic Biol Med; 2017 Jun; 107():258-265. PubMed ID: 27871818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the Model of Atherosclerosis Formation in Pig Hearts as a Result of Impaired Activity of DNA Repair Enzymes.
    Paslawski R; Kowalczyk P; Paslawska U; Wiśniewski J; Dzięgiel P; Janiszewski A; Kiczak L; Zacharski M; Gawdzik B; Kramkowski K; Szuba A
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.