These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 34884816)

  • 1. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen.
    Drozdov AS; Nikitin PI; Rozenberg JM
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Models for Nanomedicine: Recent Developments.
    Mascheroni P; Schrefler BA
    Curr Med Chem; 2018; 25(34):4192-4207. PubMed ID: 28911299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.
    Layek B; Sadhukha T; Panyam J; Prabha S
    Mol Cancer Ther; 2018 Jun; 17(6):1196-1206. PubMed ID: 29592881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotargeted agents: an emerging therapeutic strategy for breast cancer.
    Du M; Ouyang Y; Meng F; Ma Q; Liu H; Zhuang Y; Pang M; Cai T; Cai Y
    Nanomedicine (Lond); 2019 Jul; 14(13):1771-1786. PubMed ID: 31298065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle approaches to combating drug resistance.
    Moon JH; Moxley JW; Zhang P; Cui H
    Future Med Chem; 2015 Aug; 7(12):1503-10. PubMed ID: 26334205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Strategies in the Design of Nanomedicines to Oppose Uptake by the Mononuclear Phagocyte System and Enhance Cancer Therapeutic Efficacy.
    Zhou Y; Dai Z
    Chem Asian J; 2018 Nov; 13(22):3333-3340. PubMed ID: 29441706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer.
    MacCuaig WM; Fouts BL; McNally MW; Grizzle WE; Chuong P; Samykutty A; Mukherjee P; Li M; Jasinski JB; Behkam B; McNally LR
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):49614-49630. PubMed ID: 34653338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Targeting of Cancers with Nanotherapeutics.
    Foster C; Watson A; Kaplinsky J; Kamaly N
    Methods Mol Biol; 2017; 1530():13-37. PubMed ID: 28150194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles.
    Busatto S; Pham A; Suh A; Shapiro S; Wolfram J
    Biomed Microdevices; 2019 Apr; 21(2):46. PubMed ID: 30989386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy.
    Fu Z; Xiang J
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33266216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biodistribution of self-assembling protein nanoparticles shows they are promising vaccine platforms.
    Yang Y; Neef T; Mittelholzer C; Garcia Garayoa E; Bläuenstein P; Schibli R; Aebi U; Burkhard P
    J Nanobiotechnology; 2013 Nov; 11():36. PubMed ID: 24219600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Pharmaceutical Aspects of Dendrimers for the Delivery of Anticancer Drugs.
    Dubey SK; Salunkhe S; Agrawal M; Kali M; Singhvi G; Tiwari S; Saraf S; Saraf S; Alexander A
    Curr Drug Targets; 2020; 21(6):528-540. PubMed ID: 31670619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into Active Targeting of Nanoparticles in Drug Delivery: Advances in Clinical Studies and Design Considerations for Cancer Nanomedicine.
    Pearce AK; O'Reilly RK
    Bioconjug Chem; 2019 Sep; 30(9):2300-2311. PubMed ID: 31441642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-objective optimization of tumor response to drug release from vasculature-bound nanoparticles.
    Chamseddine IM; Frieboes HB; Kokkolaras M
    Sci Rep; 2020 May; 10(1):8294. PubMed ID: 32427977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into nanoparticle cellular uptake and intracellular targeting.
    Yameen B; Choi WI; Vilos C; Swami A; Shi J; Farokhzad OC
    J Control Release; 2014 Sep; 190():485-99. PubMed ID: 24984011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity.
    Ryu JH; Yoon HY; Sun IC; Kwon IC; Kim K
    Adv Mater; 2020 Dec; 32(51):e2002197. PubMed ID: 33051905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature-inspired protein mineralization strategies for nanoparticle construction: advancing effective cancer therapy.
    Cao Y; Xu R; Liang Y; Tan J; Guo X; Fang J; Wang S; Xu L
    Nanoscale; 2024 Jul; 16(29):13718-13754. PubMed ID: 38954406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomedicines for cancer therapy: current status, challenges and future prospects.
    Bor G; Mat Azmi ID; Yaghmur A
    Ther Deliv; 2019 Feb; 10(2):113-132. PubMed ID: 30678550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.