BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34884864)

  • 1. A Comparative Transcriptomic Meta-Analysis Revealed Conserved Key Genes and Regulatory Networks Involved in Drought Tolerance in Cereal Crops.
    Baldoni E; Frugis G; Martinelli F; Benny J; Paffetti D; Buti M
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation.
    Hayano-Kanashiro C; Calderón-Vázquez C; Ibarra-Laclette E; Herrera-Estrella L; Simpson J
    PLoS One; 2009 Oct; 4(10):e7531. PubMed ID: 19888455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance.
    Casaretto JA; El-Kereamy A; Zeng B; Stiegelmeyer SM; Chen X; Bi YM; Rothstein SJ
    BMC Genomics; 2016 Apr; 17():312. PubMed ID: 27129581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms.
    Zenda T; Liu S; Wang X; Jin H; Liu G; Duan H
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30340410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance.
    Zhang X; Liu X; Zhang D; Tang H; Sun B; Li C; Hao L; Liu C; Li Y; Shi Y; Xie X; Song Y; Wang T; Li Y
    PLoS One; 2017; 12(7):e0179477. PubMed ID: 28700592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific peroxidases differentiate Brachypodium distachyon accessions and are associated with drought tolerance traits.
    Luo N; Yu X; Nie G; Liu J; Jiang Y
    Ann Bot; 2016 Aug; 118(2):259-70. PubMed ID: 27325900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive in silico analysis of the underutilized crop tef (Eragrostis tef (Zucc.) Trotter) genome reveals drought tolerance signatures.
    Bekele-Alemu A; Ligaba-Osena A
    BMC Plant Biol; 2023 Oct; 23(1):506. PubMed ID: 37865758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops.
    Wei S; Xia R; Chen C; Shang X; Ge F; Wei H; Chen H; Wu Y; Xie Q
    Plant Biotechnol J; 2021 Oct; 19(10):2069-2081. PubMed ID: 34031958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley.
    Wehner G; Balko C; Humbeck K; Zyprian E; Ordon F
    BMC Plant Biol; 2016 Jan; 16():3. PubMed ID: 26733420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin-Mediated Molecular Responses in Plants: Enhancing Stress Tolerance and Mitigating Environmental Challenges in Cereal Crop Production.
    Muhammad I; Ahmad S; Shen W
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing critical mechanisms in determining sorghum resistance to drought and salt using mRNA, small RNA and degradome sequencing.
    Li Q; Wang J; Liu Q; Zhang J; Zhu X; Hua Y; Zhou T; Yan S
    BMC Plant Biol; 2024 Jun; 24(1):547. PubMed ID: 38872092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription factors as molecular switches regulating plant responses to drought stress.
    Wei H; Wang X; Wang K; Tang X; Zhang N; Si H
    Physiol Plant; 2024; 176(3):e14366. PubMed ID: 38812034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding the gene regulatory network of endosperm differentiation in maize.
    Yuan Y; Huo Q; Zhang Z; Wang Q; Wang J; Chang S; Cai P; Song KM; Galbraith DW; Zhang W; Huang L; Song R; Ma Z
    Nat Commun; 2024 Jan; 15(1):34. PubMed ID: 38167709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network Candidate Genes in Breeding for Drought Tolerant Crops.
    Krannich CT; Maletzki L; Kurowsky C; Horn R
    Int J Mol Sci; 2015 Jul; 16(7):16378-400. PubMed ID: 26193269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses.
    Rane J; Singh AK; Kumar M; Boraiah KM; Meena KK; Pradhan A; Prasad PVV
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize.
    Liu S; Li C; Wang H; Wang S; Yang S; Liu X; Yan J; Li B; Beatty M; Zastrow-Hayes G; Song S; Qin F
    Genome Biol; 2020 Jul; 21(1):163. PubMed ID: 32631406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of Specific Alleles of Zinc-Finger Transcription Factors,
    Baidyussen A; Jatayev S; Khassanova G; Amantayev B; Sereda G; Sereda S; Gupta NK; Gupta S; Schramm C; Anderson P; Jenkins CLD; Soole KL; Langridge P; Shavrukov Y
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous methylglyoxal alleviates drought-induced 'plant diabetes' and leaf senescence in maize.
    Lin YH; Zhou YN; Liang XG; Jin YK; Xiao ZD; Zhang YJ; Huang C; Hong B; Chen ZY; Zhou SL; Shen S
    J Exp Bot; 2024 Mar; 75(7):1982-1996. PubMed ID: 38124377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polysome-bound mRNAs and translational mechanisms regulate drought tolerance in rice.
    Dawane A; Deshpande S; Vijayaraghavreddy P; Vemanna RS
    Plant Physiol Biochem; 2024 Mar; 208():108513. PubMed ID: 38513519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cereal genetics: Novel modulators of spikelet number and flowering time.
    Li M; Jiao Y
    Curr Biol; 2024 Jun; 34(11):R528-R530. PubMed ID: 38834023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.