These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34884918)

  • 1. Heat Shock Factor 1 Directly Regulates Postsynaptic Scaffolding PSD-95 in Aging and Huntington's Disease and Influences Striatal Synaptic Density.
    Zarate N; Intihar TA; Yu D; Sawyer J; Tsai W; Syed M; Carlson L; Gomez-Pastor R
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HSF1 and Its Role in Huntington's Disease Pathology.
    Kim H; Gomez-Pastor R
    Adv Exp Med Biol; 2023; 1410():35-95. PubMed ID: 36396925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington's disease.
    Liu C; Fu Z; Wu S; Wang X; Zhang S; Chu C; Hong Y; Wu W; Chen S; Jiang Y; Wu Y; Song Y; Liu Y; Guo X
    EMBO Mol Med; 2022 Jul; 14(7):e15851. PubMed ID: 35670111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease.
    Gomez-Pastor R; Burchfiel ET; Neef DW; Jaeger AM; Cabiscol E; McKinstry SU; Doss A; Aballay A; Lo DC; Akimov SS; Ross CA; Eroglu C; Thiele DJ
    Nat Commun; 2017 Feb; 8():14405. PubMed ID: 28194040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor suppressor p53 regulates heat shock factor 1 protein degradation in Huntington's disease.
    Mansky RH; Greguske EA; Yu D; Zarate N; Intihar TA; Tsai W; Brown TG; Thayer MN; Kumar K; Gomez-Pastor R
    Cell Rep; 2023 Mar; 42(3):112198. PubMed ID: 36867535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative interactomes of HSF1 in stress and disease reveal a role for CTCF in HSF1-mediated gene regulation.
    Burchfiel ET; Vihervaara A; Guertin MJ; Gomez-Pastor R; Thiele DJ
    J Biol Chem; 2021; 296():100097. PubMed ID: 33208463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction.
    Chen JY; Parekh M; Seliman H; Bakshinskaya D; Dai W; Kwan K; Chen KY; Liu AYC
    J Biol Chem; 2018 Oct; 293(40):15581-15593. PubMed ID: 30143534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.
    Wu J; Ryskamp DA; Liang X; Egorova P; Zakharova O; Hung G; Bezprozvanny I
    J Neurosci; 2016 Jan; 36(1):125-41. PubMed ID: 26740655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor impairments, striatal degeneration, and altered dopamine-glutamate interplay in mice lacking PSD-95.
    Zhang J; Saur T; Duke AN; Grant SG; Platt DM; Rowlett JK; Isacson O; Yao WD
    J Neurogenet; 2014; 28(1-2):98-111. PubMed ID: 24702501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease.
    Buren C; Parsons MP; Smith-Dijak A; Raymond LA
    Neurobiol Dis; 2016 Mar; 87():80-90. PubMed ID: 26711622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The heat shock response, determined by QuantiGene multiplex, is impaired in HD mouse models and not caused by HSF1 reduction.
    Gomez-Paredes C; Mason MA; Taxy BA; Papadopoulou AS; Paganetti P; Bates GP
    Sci Rep; 2021 Apr; 11(1):9117. PubMed ID: 33907289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurochemical correlates of synapse density in a Huntington's disease mouse model.
    Zarate N; Gundry K; Yu D; Casby J; Eberly LE; Öz G; Gomez-Pastor R
    J Neurochem; 2023 Jan; 164(2):226-241. PubMed ID: 36272099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease.
    Nithianantharajah J; Hannan AJ
    Neuroscience; 2013 Oct; 251():66-74. PubMed ID: 22633949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Huntingtin interacting protein HYPK is a negative regulator of heat shock response and is downregulated in models of Huntington's Disease.
    Das S; Bhattacharyya NP
    Exp Cell Res; 2016 May; 343(2):107-117. PubMed ID: 27017930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease.
    Fan J; Gladding CM; Wang L; Zhang LY; Kaufman AM; Milnerwood AJ; Raymond LA
    Neurobiol Dis; 2012 Mar; 45(3):999-1009. PubMed ID: 22198502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered sensory experience exacerbates stable dendritic spine and synapse loss in a mouse model of Huntington's disease.
    Murmu RP; Li W; Szepesi Z; Li JY
    J Neurosci; 2015 Jan; 35(1):287-98. PubMed ID: 25568121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathological gamma oscillations, impaired dopamine release, synapse loss and reduced dynamic range of unitary glutamatergic synaptic transmission in the striatum of hypokinetic Q175 Huntington mice.
    Rothe T; Deliano M; Wójtowicz AM; Dvorzhak A; Harnack D; Paul S; Vagner T; Melnick I; Stark H; Grantyn R
    Neuroscience; 2015 Dec; 311():519-38. PubMed ID: 26546830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease.
    Puigdellívol M; Cherubini M; Brito V; Giralt A; Suelves N; Ballesteros J; Zamora-Moratalla A; Martín ED; Eipper BA; Alberch J; Ginés S
    Hum Mol Genet; 2015 Dec; 24(25):7265-85. PubMed ID: 26464483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model.
    Gladding CM; Fan J; Zhang LY; Wang L; Xu J; Li EH; Lombroso PJ; Raymond LA
    J Neurochem; 2014 Jul; 130(1):145-59. PubMed ID: 24588402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington's disease.
    Smith GA; Rocha EM; McLean JR; Hayes MA; Izen SC; Isacson O; Hallett PJ
    Hum Mol Genet; 2014 Sep; 23(17):4510-27. PubMed ID: 24728190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.