These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
464 related articles for article (PubMed ID: 34884927)
1. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning. Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Manavalan B; Shoombuatong W Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884927 [TBL] [Abstract][Full Text] [Related]
2. AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning. Charoenkwan P; Ahmed S; Nantasenamat C; Quinn JMW; Moni MA; Lio' P; Shoombuatong W Sci Rep; 2022 May; 12(1):7697. PubMed ID: 35546347 [TBL] [Abstract][Full Text] [Related]
3. NeuroPred-FRL: an interpretable prediction model for identifying neuropeptide using feature representation learning. Hasan MM; Alam MA; Shoombuatong W; Deng HW; Manavalan B; Kurata H Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33975333 [TBL] [Abstract][Full Text] [Related]
4. StackHCV: a web-based integrative machine-learning framework for large-scale identification of hepatitis C virus NS5B inhibitors. Malik AA; Chotpatiwetchkul W; Phanus-Umporn C; Nantasenamat C; Charoenkwan P; Shoombuatong W J Comput Aided Mol Des; 2021 Oct; 35(10):1037-1053. PubMed ID: 34622387 [TBL] [Abstract][Full Text] [Related]
5. Rapid screening based on machine learning and molecular docking of umami peptides from porcine bone. Liu Q; Gao X; Pan D; Liu Z; Xiao C; Du L; Cai Z; Lu W; Dang Y; Zou Y J Sci Food Agric; 2023 Jun; 103(8):3915-3925. PubMed ID: 36335574 [TBL] [Abstract][Full Text] [Related]
6. UmamiPreDL: Deep learning model for umami taste prediction of peptides using BERT and CNN. Indiran AP; Fatima H; Chattopadhyay S; Ramadoss S; Radhakrishnan Y Comput Biol Chem; 2024 Aug; 111():108116. PubMed ID: 38823360 [TBL] [Abstract][Full Text] [Related]
7. iUmami-SCM: A Novel Sequence-Based Predictor for Prediction and Analysis of Umami Peptides Using a Scoring Card Method with Propensity Scores of Dipeptides. Charoenkwan P; Yana J; Nantasenamat C; Hasan MM; Shoombuatong W J Chem Inf Model; 2020 Dec; 60(12):6666-6678. PubMed ID: 33094610 [TBL] [Abstract][Full Text] [Related]
8. IUP-BERT: Identification of Umami Peptides Based on BERT Features. Jiang L; Jiang J; Wang X; Zhang Y; Zheng B; Liu S; Zhang Y; Liu C; Wan Y; Xiang D; Lv Z Foods; 2022 Nov; 11(22):. PubMed ID: 36429332 [TBL] [Abstract][Full Text] [Related]
9. Enhancer-FRL: Improved and Robust Identification of Enhancers and Their Activities Using Feature Representation Learning. Wang C; Zou Q; Ju Y; Shi H IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):967-975. PubMed ID: 36063523 [TBL] [Abstract][Full Text] [Related]
10. Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework. Gaffar S; Tayara H; Chong KT Comput Biol Med; 2024 May; 174():108438. PubMed ID: 38613893 [TBL] [Abstract][Full Text] [Related]
11. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation. Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751 [TBL] [Abstract][Full Text] [Related]
12. StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides. Charoenkwan P; Chiangjong W; Nantasenamat C; Hasan MM; Manavalan B; Shoombuatong W Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33963832 [TBL] [Abstract][Full Text] [Related]
13. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Pallante L; Korfiati A; Androutsos L; Stojceski F; Bompotas A; Giannikos I; Raftopoulos C; Malavolta M; Grasso G; Mavroudi S; Kalogeras A; Martos V; Amoroso D; Piga D; Theofilatos K; Deriu MA Sci Rep; 2022 Dec; 12(1):21735. PubMed ID: 36526644 [TBL] [Abstract][Full Text] [Related]
14. mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation. Manavalan B; Basith S; Shin TH; Wei L; Lee G Bioinformatics; 2019 Aug; 35(16):2757-2765. PubMed ID: 30590410 [TBL] [Abstract][Full Text] [Related]
15. A TastePeptides-Meta system including an umami/bitter classification model Umami_YYDS, a TastePeptidesDB database and an open-source package Auto_Taste_ML. Cui Z; Zhang Z; Zhou T; Zhou X; Zhang Y; Meng H; Wang W; Liu Y Food Chem; 2023 Mar; 405(Pt B):134812. PubMed ID: 36423555 [TBL] [Abstract][Full Text] [Related]
16. NEPTUNE: A novel computational approach for accurate and large-scale identification of tumor homing peptides. Charoenkwan P; Schaduangrat N; Lio' P; Moni MA; Manavalan B; Shoombuatong W Comput Biol Med; 2022 Sep; 148():105700. PubMed ID: 35715261 [TBL] [Abstract][Full Text] [Related]
17. Screening and identification of novel umami peptides from yeast proteins: Insights into their mechanism of action on receptors T1R1/T1R3. Gu Y; Zhou X; Niu Y; Zhang J; Sun B; Liu Z; Mao X; Zhang Y; Li K; Zhang Y Food Chem; 2025 Jan; 463(Pt 2):141138. PubMed ID: 39265305 [TBL] [Abstract][Full Text] [Related]
18. mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides. Boopathi V; Subramaniyam S; Malik A; Lee G; Manavalan B; Yang DC Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013619 [TBL] [Abstract][Full Text] [Related]
19. Extended dipeptide composition framework for accurate identification of anticancer peptides. Ullah F; Salam A; Nadeem M; Amin F; AlSalman H; Abrar M; Alfakih T Sci Rep; 2024 Jul; 14(1):17381. PubMed ID: 39075193 [TBL] [Abstract][Full Text] [Related]
20. iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features. Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Shoombuatong W Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]