BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34884975)

  • 21. (20S) Ginsenoside Rh2-Activated, Distinct Apoptosis Pathways in Highly and Poorly Differentiated Human Esophageal Cancer Cells.
    Li H; Han C; Chen C; Han G; Li Y
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ginsenoside-Rh2 blocks the cell cycle of SK-HEP-1 cells at the G1/S boundary by selectively inducing the protein expression of p27kip1.
    Lee KY; Park JA; Chung E; Lee YH; Kim SI; Lee SK
    Cancer Lett; 1996 Dec; 110(1-2):193-200. PubMed ID: 9018101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte.
    Ota A; Zhang J; Ping P; Han J; Wang Y
    Circ Res; 2010 Apr; 106(8):1404-12. PubMed ID: 20299663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning.
    Smith JR; Workman P
    Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells.
    Oh M; Choi YH; Choi S; Chung H; Kim K; Kim SI; Kim DK; Kim ND
    Int J Oncol; 1999 May; 14(5):869-75. PubMed ID: 10200336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites.
    Eckl JM; Scherr MJ; Freiburger L; Daake MA; Sattler M; Richter K
    J Biol Chem; 2015 Dec; 290(52):30843-54. PubMed ID: 26511315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites.
    Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K
    J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ginsenoside Rh2 Targets EGFR by Up-Regulation of miR-491 to Enhance Anti-tumor Activity in Hepatitis B Virus-Related Hepatocellular Carcinoma.
    Chen W; Qiu Y
    Cell Biochem Biophys; 2015 Jun; 72(2):325-31. PubMed ID: 25561284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Induction of differentiation by ginsenoside Rh2 in hepatocarcinoma cell SMMC-7721].
    Zeng XL; Tu ZG
    Ai Zheng; 2004 Aug; 23(8):879-84. PubMed ID: 15301707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ginsenoside Rh2 induces human hepatoma cell apoptosisvia bax/bak triggered cytochrome C release and caspase-9/caspase-8 activation.
    Guo XX; Guo Q; Li Y; Lee SK; Wei XN; Jin YH
    Int J Mol Sci; 2012 Nov; 13(12):15523-35. PubMed ID: 23443079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cdc37 as a Co-chaperone to Hsp90.
    Prince TL; Lang BJ; Okusha Y; Eguchi T; Calderwood SK
    Subcell Biochem; 2023; 101():141-158. PubMed ID: 36520306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ginsenoside 20(s)-Rh2 as potent natural histone deacetylase inhibitors suppressing the growth of human leukemia cells.
    Liu ZH; Li J; Xia J; Jiang R; Zuo GW; Li XP; Chen Y; Xiong W; Chen DL
    Chem Biol Interact; 2015 Dec; 242():227-34. PubMed ID: 26482938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells.
    Tang XP; Tang GD; Fang CY; Liang ZH; Zhang LY
    World J Gastroenterol; 2013 Mar; 19(10):1582-92. PubMed ID: 23538603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design, synthesis and bioevaluation of inhibitors targeting HSP90-CDC37 protein-protein interaction based on a hydrophobic core.
    Zhang Q; Wu X; Zhou J; Zhang L; Xu X; Zhang L; You Q; Wang L
    Eur J Med Chem; 2021 Jan; 210():112959. PubMed ID: 33109397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cdc37 interacts with the glycine-rich loop of Hsp90 client kinases.
    Terasawa K; Yoshimatsu K; Iemura S; Natsume T; Tanaka K; Minami Y
    Mol Cell Biol; 2006 May; 26(9):3378-89. PubMed ID: 16611982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ.
    Sonamoto R; Kii I; Koike Y; Sumida Y; Kato-Sumida T; Okuno Y; Hosoya T; Hagiwara M
    Sci Rep; 2015 Aug; 5():12728. PubMed ID: 26234946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cdc37 as a co-chaperone to Hsp90.
    Calderwood SK
    Subcell Biochem; 2015; 78():103-12. PubMed ID: 25487018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. (20S)G-Rh2 Inhibits NF-κB Regulated Epithelial-Mesenchymal Transition by Targeting Annexin A2.
    Wang YS; Li H; Li Y; Zhang S; Jin YH
    Biomolecules; 2020 Mar; 10(4):. PubMed ID: 32244350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression and purification of recombinant NRL-Hsp90α and Cdc37-CRL proteins for in vitro Hsp90/Cdc37 inhibitors screening.
    He J; Niu X; Hu C; Zhang H; Guo Y; Ge Y; Wang G; Jiang Y
    Protein Expr Purif; 2013 Nov; 92(1):119-27. PubMed ID: 24056254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Anti-Tumor Effect and Underlying Apoptotic Mechanism of Ginsenoside Rk1 and Rg5 in Human Liver Cancer Cells.
    Chen C; Lv Q; Li Y; Jin YH
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34199025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.