These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Terkelsen T; Russo F; Gromov P; Haakensen VD; Brunak S; Gromova I; Krogh A; Papaleo E Breast Cancer Res; 2020 Jun; 22(1):73. PubMed ID: 32605588 [TBL] [Abstract][Full Text] [Related]
43. Notch-Mediated Tumor-Stroma-Inflammation Networks Promote Invasive Properties and CXCL8 Expression in Triple-Negative Breast Cancer. Liubomirski Y; Lerrer S; Meshel T; Morein D; Rubinstein-Achiasaf L; Sprinzak D; Wiemann S; Körner C; Ehrlich M; Ben-Baruch A Front Immunol; 2019; 10():804. PubMed ID: 31105691 [TBL] [Abstract][Full Text] [Related]
44. Tumor microenvironment characterization in triple-negative breast cancer identifies prognostic gene signature. Qin Y; Deng J; Zhang L; Yuan J; Yang H; Li Q Aging (Albany NY); 2021 Feb; 13(4):5485-5505. PubMed ID: 33536349 [TBL] [Abstract][Full Text] [Related]
45. Immune Cell Infiltration-Based Characterization of Triple-Negative Breast Cancer Predicts Prognosis and Chemotherapy Response Markers. Lv Y; Lv D; Lv X; Xing P; Zhang J; Zhang Y Front Genet; 2021; 12():616469. PubMed ID: 33815462 [TBL] [Abstract][Full Text] [Related]
46. No association between triple-negative breast cancer and prognosis of patients receiving breast-conserving treatment. Mu L; Liu Y; Xiao M; Liu W; Liu M; Wang X Oncol Lett; 2017 Dec; 14(6):7862-7872. PubMed ID: 29250179 [TBL] [Abstract][Full Text] [Related]
47. Examination and prognostic implications of the unique microenvironment of breast cancer brain metastases. Sambade MJ; Prince G; Deal AM; Trembath D; McKee M; Garrett A; Keith K; Ramirez J; Midkiff B; Blackwell K; Sammons S; Leone JP; Brufsky A; Morikawa A; Brogi E; Seidman A; Ewend M; Carey LA; Moschos SJ; Hamilton RL; Vincent B; Anders C Breast Cancer Res Treat; 2019 Jul; 176(2):321-328. PubMed ID: 31016641 [TBL] [Abstract][Full Text] [Related]
48. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Park SY; Kim HM; Koo JS Breast Cancer Res Treat; 2015 Feb; 149(3):727-41. PubMed ID: 25667103 [TBL] [Abstract][Full Text] [Related]
49. KRAS signaling enriched triple negative breast cancer is associated with favorable tumor immune microenvironment and better survival. Tokumaru Y; Oshi M; Katsuta E; Yan L; Satyananda V; Matsuhashi N; Futamura M; Akao Y; Yoshida K; Takabe K Am J Cancer Res; 2020; 10(3):897-907. PubMed ID: 32266098 [TBL] [Abstract][Full Text] [Related]
50. The opposing effects of interferon-beta and oncostatin-M as regulators of cancer stem cell plasticity in triple-negative breast cancer. Doherty MR; Parvani JG; Tamagno I; Junk DJ; Bryson BL; Cheon HJ; Stark GR; Jackson MW Breast Cancer Res; 2019 Apr; 21(1):54. PubMed ID: 31036052 [TBL] [Abstract][Full Text] [Related]
51. Novel miRNA Targets and Therapies in the Triple-Negative Breast Cancer Microenvironment: An Emerging Hope for a Challenging Disease. Qattan A Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255471 [TBL] [Abstract][Full Text] [Related]
52. Molecular Mechanisms and Emerging Therapeutic Targets of Triple-Negative Breast Cancer Metastasis. Neophytou C; Boutsikos P; Papageorgis P Front Oncol; 2018; 8():31. PubMed ID: 29520340 [TBL] [Abstract][Full Text] [Related]
53. Tumor Microenvironment in Breast Cancer-Updates on Therapeutic Implications and Pathologic Assessment. Li JJ; Tsang JY; Tse GM Cancers (Basel); 2021 Aug; 13(16):. PubMed ID: 34439387 [TBL] [Abstract][Full Text] [Related]
54. B7-H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy. Cheng N; Bei Y; Song Y; Zhang W; Xu L; Zhang W; Yang N; Bai X; Shu Y; Shen P Biochem Pharmacol; 2021 Jan; 183():114298. PubMed ID: 33153969 [TBL] [Abstract][Full Text] [Related]
55. Breast cancer recurrence according to molecular subtype. Shim HJ; Kim SH; Kang BJ; Choi BG; Kim HS; Cha ES; Song BJ Asian Pac J Cancer Prev; 2014; 15(14):5539-44. PubMed ID: 25081661 [TBL] [Abstract][Full Text] [Related]
56. Comparisons of p53, KI67 and BRCA1 expressions in patients with different molecular subtypes of breast cancer and their relationships with pathology and prognosis. Li Y; Zhang X; Qiu J; Pang T; Huang L; Zeng Q J BUON; 2019; 24(6):2361-2368. PubMed ID: 31983107 [TBL] [Abstract][Full Text] [Related]
57. Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: novel anti-tumor mechanisms of Cannabidiol in breast cancer. Elbaz M; Nasser MW; Ravi J; Wani NA; Ahirwar DK; Zhao H; Oghumu S; Satoskar AR; Shilo K; Carson WE; Ganju RK Mol Oncol; 2015 Apr; 9(4):906-19. PubMed ID: 25660577 [TBL] [Abstract][Full Text] [Related]
58. The Contribution of Race to Breast Tumor Microenvironment Composition and Disease Progression. Kim G; Pastoriza JM; Condeelis JS; Sparano JA; Filippou PS; Karagiannis GS; Oktay MH Front Oncol; 2020; 10():1022. PubMed ID: 32714862 [TBL] [Abstract][Full Text] [Related]
59. The impact of distinct triple-negative breast cancer subtypes on misdiagnosis and diagnostic delay. Elfgen C; Varga Z; Reeve K; Moskovszky L; Bjelic-Radisic V; Tausch C; Güth U Breast Cancer Res Treat; 2019 Aug; 177(1):67-75. PubMed ID: 31154578 [TBL] [Abstract][Full Text] [Related]
60. Triple-negative breast cancer and basal-like subtype : Pathology and targeted therapy. Bando Y; Kobayashi T; Miyakami Y; Sumida S; Kakimoto T; Saijo Y; Uehara H J Med Invest; 2021; 68(3.4):213-219. PubMed ID: 34759133 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]