These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34885337)

  • 1. Topology Optimisation for Compliant Hip Implant Design and Reduced Strain Shielding.
    Tan N; van Arkel RJ
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Debulking of the Femoral Stem in a Primary Total Hip Joint Replacement: A Novel Method to Reduce Stress Shielding.
    Sunavala-Dossabhoy G; Saba BM; McCarthy KJ
    Bioengineering (Basel); 2024 Apr; 11(4):. PubMed ID: 38671814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel hybrid design and modelling of a customised graded Ti-6Al-4V porous hip implant to reduce stress-shielding: An experimental and numerical analysis.
    Naghavi SA; Tamaddon M; Garcia-Souto P; Moazen M; Taylor S; Hua J; Liu C
    Front Bioeng Biotechnol; 2023; 11():1092361. PubMed ID: 36777247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty.
    Arabnejad S; Johnston B; Tanzer M; Pasini D
    J Orthop Res; 2017 Aug; 35(8):1774-1783. PubMed ID: 27664796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design optimization of skeletal hip implant cross-sections using finite-element analysis.
    Beulah P; Sivarasu S; Mathew L
    J Long Term Eff Med Implants; 2009; 19(4):271-8. PubMed ID: 21083533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biomechanical effect of anteversion and modular neck offset on stress shielding for short-stem versus conventional long-stem hip implants.
    Goshulak P; Samiezadeh S; Aziz MS; Bougherara H; Zdero R; Schemitsch EH
    Med Eng Phys; 2016 Mar; 38(3):232-40. PubMed ID: 26774671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric Design of Hip Implant With Gradient Porous Structure.
    Gao X; Zhao Y; Wang M; Liu Z; Liu C
    Front Bioeng Biotechnol; 2022; 10():850184. PubMed ID: 35651549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancement in total hip implant: a comprehensive review of mechanics and performance parameters across diverse novelties.
    Soliman MM; Islam MT; Chowdhury MEH; Alqahtani A; Musharavati F; Alam T; Alshammari AS; Misran N; Soliman MS; Mahmud S; Khandakar A
    J Mater Chem B; 2023 Nov; 11(44):10507-10537. PubMed ID: 37873807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additively manufactured controlled porous orthopedic joint replacement designs to reduce bone stress shielding: a systematic review.
    Safavi S; Yu Y; Robinson DL; Gray HA; Ackland DC; Lee PVS
    J Orthop Surg Res; 2023 Jan; 18(1):42. PubMed ID: 36647070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the design and properties of porous femoral stems with adjustable stiffness gradient.
    Wang S; Zhou X; Liu L; Shi Z; Hao Y
    Med Eng Phys; 2020 Jul; 81():30-38. PubMed ID: 32505662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem.
    Jetté B; Brailovski V; Simoneau C; Dumas M; Terriault P
    J Mech Behav Biomed Mater; 2018 Jan; 77():539-550. PubMed ID: 29069636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain shielding inspired re-design of proximal femoral stems for total hip arthroplasty.
    Cilla M; Checa S; Duda GN
    J Orthop Res; 2017 Nov; 35(11):2534-2544. PubMed ID: 28176355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Scale Topology Optimization of Femoral Stem Structure Subject to Stress Shielding Reduce.
    Xiao Z; Wu L; Wu W; Tang R; Dai J; Zhu D
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a density-based topology optimization of homogenized lattice structures for individualized hip endoprostheses and validation using micro-FE.
    Müller P; Synek A; Stauß T; Steinnagel C; Ehlers T; Gembarski PC; Pahr D; Lachmayer R
    Sci Rep; 2024 Mar; 14(1):5719. PubMed ID: 38459092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural optimization of orthopedic hip implant using parametric and non-parametric optimization techniques.
    Abdullah M; Mubashar A; Uddin E
    Biomed Phys Eng Express; 2023 Aug; 9(5):. PubMed ID: 37536305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of cellular femoral stem for stress shielding and interface stability.
    Rahmat N; Kadkhodapour J; Arbabtafti M
    Int J Artif Organs; 2023 Jun; 46(6):370-377. PubMed ID: 37070137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress and strain distribution in femoral heads for hip resurfacing arthroplasty with different materials: A finite element analysis.
    Vogel D; Wehmeyer M; Kebbach M; Heyer H; Bader R
    J Mech Behav Biomed Mater; 2021 Jan; 113():104115. PubMed ID: 33189013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How stiffness and distal interlocking of revision hip stems influence the femoral cortical strain pattern.
    Ellenrieder M; Steinhauser E; Bader R; Mittelmeier W
    J Orthop Sci; 2012 May; 17(3):205-12. PubMed ID: 22406866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental assessment of a new direct fixation implant for artificial limbs.
    Tomaszewski PK; Lasnier B; Hannink G; Verkerke GJ; Verdonschot N
    J Mech Behav Biomed Mater; 2013 May; 21():77-85. PubMed ID: 23510969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femoral Stems With Porous Lattice Structures: A Review.
    Liu B; Wang H; Zhang N; Zhang M; Cheng CK
    Front Bioeng Biotechnol; 2021; 9():772539. PubMed ID: 34869289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.