BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 34885424)

  • 1. Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete.
    Raghav M; Park T; Yang HM; Lee SY; Karthick S; Lee HS
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry.
    Nicoara AI; Stoica AE; Vrabec M; Šmuc Rogan N; Sturm S; Ow-Yang C; Gulgun MA; Bundur ZB; Ciuca I; Vasile BS
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32331388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of utilization of industrial waste materials as cement replacement in pervious concrete: An alternative approach to sustainable pervious concrete production.
    Khankhaje E; Kim T; Jang H; Kim CS; Kim J; Rafieizonooz M
    Heliyon; 2024 Feb; 10(4):e26188. PubMed ID: 38434066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pozzolanic Reactivity of Silica Fume and Ground Rice Husk Ash as Reactive Silica in a Cementitious System: A Comparative Study.
    Xu W; Lo TY; Wang W; Ouyang D; Wang P; Xing F
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential Role of GGBS and ACBFS Blast Furnace Slag at 90 Days for Application in Rigid Concrete Pavements.
    Nicula LM; Manea DL; Simedru D; Cadar O; Dragomir ML; Ardelean I; Corbu O
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries.
    Chandra Paul S; Mbewe PBK; Kong SY; Šavija B
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30987183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and Microstructure of Alkali-Activated Rice Husk Ash-Granulated Blast Furnace Slag Tailing Composite Cemented Paste Backfill.
    Zhao W; Ji C; Sun Q; Gu Q
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of agricultural and industrial waste as replacement of cement in pavement quality concrete: a review.
    Pandey A; Kumar B
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):24504-24546. PubMed ID: 35064477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical characteristics of hardened concrete with different mineral admixtures: a review.
    Ayub T; Khan SU; Memon FA
    ScientificWorldJournal; 2014; 2014():875082. PubMed ID: 24688443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of Ground Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Exposed to Natural Carbonation.
    Rivera RA; Sanjuán MÁ; Martín DA; Costafreda JL
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34208389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing the Carbonation Profile with Raman Spectroscopy: Effects of Fly Ash and Ground Granulated Blast Furnace Slag.
    Yue Y; Wang JJ; Basheer PAM; Bai Y
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Sugarcane Bagasse Ash and Silica Fume on the Mechanical and Durability Properties of Concrete.
    Farrant WE; Babafemi AJ; Kolawole JT; Panda B
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green Concrete for a Circular Economy: A Review on Sustainability, Durability, and Structural Properties.
    Al-Hamrani A; Kucukvar M; Alnahhal W; Mahdi E; Onat NC
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33445769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of chloride binding capacity of concrete containing supplementary cementitious materials.
    Abd El-Fattah H; Abd El-Zaher Y; Kohail M
    Sci Rep; 2024 Jun; 14(1):12970. PubMed ID: 38839793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term analysis on the combined use of sugarcane bagasse ash and rice husk ash as supplementary cementitious material in concrete production.
    Channa SH; Mangi SA; Bheel N; Soomro FA; Khahro SH
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):3555-3564. PubMed ID: 34387820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of Fracture Toughness in Concretes Containing Fly Ash and Silica Fume in the First 28 Days of Curing.
    Golewski GL; Gil DM
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33435437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of Rice Husk Ash as Supplementary Cementitious Material after Production in the Field and in the Lab.
    Thiedeitz M; Schmidt W; Härder M; Kränkel T
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32998325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the properties of geopolymer concrete using nano-silica and microstructure assessment: a sustainable approach.
    Chiranjeevi K; Abraham M; Rath B; Praveenkumar TR
    Sci Rep; 2023 Oct; 13(1):17302. PubMed ID: 37828240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Healing Products of Cement Pastes with Supplementary Cementitious Materials, Calcium Sulfoaluminate and Crystalline Admixtures.
    Park B; Choi YC
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.