BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34885589)

  • 1. A Phase-Field Study of Microstructure Evolution in Tungsten Polycrystalline under He/D Irradiation.
    Han YS
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Grain Boundaries under Long-Time Radiation.
    Zhu Y; Luo J; Guo X; Xiang Y; Chapman SJ
    Phys Rev Lett; 2018 Jun; 120(22):222501. PubMed ID: 29906160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphologies of tungsten nanotendrils grown under helium exposure.
    Wang K; Doerner RP; Baldwin MJ; Meyer FW; Bannister ME; Darbal A; Stroud R; Parish CM
    Sci Rep; 2017 Feb; 7():42315. PubMed ID: 28195125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Evolution of Structural Defects under Irradiation in W by Molecular Dynamics Simulation.
    Zheng R; Xuan W; Xie J; Chen S; Yang L; Zhang L
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormal grain growth mediated by fractal boundary migration at the nanoscale.
    Braun C; Dake JM; Krill CE; Birringer R
    Sci Rep; 2018 Jan; 8(1):1592. PubMed ID: 29371608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Polycrystalline Material Microstructure with 3D Grain Boundary Based on Laguerre-Voronoi Tessellation.
    Zheng X; Sun T; Zhou J; Zhang R; Ming P
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments.
    El-Atwani O; Hinks JA; Greaves G; Gonderman S; Qiu T; Efe M; Allain JP
    Sci Rep; 2014 May; 4():4716. PubMed ID: 24796578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review.
    Liu W; Ji Y; Tan P; Zang H; He C; Yun D; Zhang C; Yang Z
    Materials (Basel); 2016 Feb; 9(2):. PubMed ID: 28787902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation.
    El-Atwani O; Nathaniel JE; Leff AC; Hattar K; Taheri ML
    Sci Rep; 2017 May; 7(1):1836. PubMed ID: 28500318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior Radiation Resistance of ZrO
    Cui B; Luo C; Chen X; Zou C; Li M; Xu L; Yang J; Meng X; Zhang H; Zhou X; Peng S; Shen H
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into microstructure of neutron-irradiated tungsten.
    Dürrschnabel M; Klimenkov M; Jäntsch U; Rieth M; Schneider HC; Terentyev D
    Sci Rep; 2021 Apr; 11(1):7572. PubMed ID: 33828109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multi-Scale Approach for Phase Field Modeling of Ultra-Hard Ceramic Composites.
    Clayton JD; Guziewski M; Ligda JP; Leavy RB; Knap J
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation.
    Yang Q; You YW; Liu L; Fan H; Ni W; Liu D; Liu CS; Benstetter G; Wang Y
    Sci Rep; 2015 Jun; 5():10959. PubMed ID: 26077598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten.
    Chen N; Niu LL; Zhang Y; Shu X; Zhou HB; Jin S; Ran G; Lu GH; Gao F
    Sci Rep; 2016 Nov; 6():36955. PubMed ID: 27874047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grain boundary dynamics driven by magnetically induced circulation at the void interface of 2D colloidal crystals.
    Lobmeyer DM; Biswal SL
    Sci Adv; 2022 Jun; 8(22):eabn5715. PubMed ID: 35658046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ atomic-scale observation of irradiation-induced void formation.
    Xu W; Zhang Y; Cheng G; Jian W; Millett PC; Koch CC; Mathaudhu SN; Zhu Y
    Nat Commun; 2013; 4():2288. PubMed ID: 23912894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new mechanism for void-cascade interaction from nondestructive depth-resolved atomic-scale measurements of ion irradiation-induced defects in Fe.
    Agarwal S; Liedke MO; Jones ACL; Reed E; Kohnert AA; Uberuaga BP; Wang YQ; Cooper J; Kaoumi D; Li N; Auguste R; Hosemann P; Capolungo L; Edwards DJ; Butterling M; Hirschmann E; Wagner A; Selim FA
    Sci Adv; 2020 Jul; 6(31):eaba8437. PubMed ID: 32832684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation damage in tungsten from cascade overlap with voids and vacancy clusters.
    Fellman A; Sand AE; Byggmästar J; Nordlund K
    J Phys Condens Matter; 2019 Oct; 31(40):405402. PubMed ID: 31266004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Quasi-Coarse-Grained Dynamics Method to Unravel the Mesoscale Evolution of Defects/Damage during Shock Loading and Spall Failure of Polycrystalline Al Microstructures.
    Agarwal G; Valisetty RR; Namburu RR; Rajendran AM; Dongare AM
    Sci Rep; 2017 Sep; 7(1):12376. PubMed ID: 28959010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of zirconium element on the microstructure and deuterium retention of W-Zr/Sc2O3 composites.
    Chen H; Luo L; Chen J; Zan X; Zhu X; Xu Q; Luo G; Chen J; Wu Y
    Sci Rep; 2016 Sep; 6():32678. PubMed ID: 27597314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.