These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34885589)

  • 21. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten.
    Cunningham WS; Gentile JM; El-Atwani O; Taylor CN; Efe M; Maloy SA; Trelewicz JR
    Sci Rep; 2018 Feb; 8(1):2897. PubMed ID: 29440652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.
    Dey S; Mardinly J; Wang Y; Valdez JA; Holesinger TG; Uberuaga BP; Ditto JJ; Drazin JW; Castro RH
    Phys Chem Chem Phys; 2016 Jun; 18(25):16921-9. PubMed ID: 27282392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.
    Chauve T; Montagnat M; Barou F; Hidas K; Tommasi A; Mainprice D
    Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2086):. PubMed ID: 28025294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films.
    Shang DS; Shi L; Sun JR; Shen BG
    Nanotechnology; 2011 Jun; 22(25):254008. PubMed ID: 21572213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element modeling of grain size effects on the ultrasonic microstructural noise backscattering in polycrystalline materials.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2018 Jul; 87():182-202. PubMed ID: 29547790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical Synthesis and Oxide Dispersion Properties of Strengthened Tungsten via Spark Plasma Sintering.
    Ding XY; Luo LM; Chen HY; Zhu XY; Zan X; Cheng JG; Wu YC
    Materials (Basel); 2016 Oct; 9(11):. PubMed ID: 28773999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct estimation of austenitic grain dimensions in heat affected zones of a martensitic steel from EBSD images.
    Altendorf H; Faessel M; Jeulin D; Latourte F
    J Microsc; 2015 May; 258(2):87-104. PubMed ID: 25689129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures.
    Fang Y; Ge W; Yang T; Du C; Wang C; Liu S; Lu Y; Yan Z; Liu H; Liu F; Yang G; Shen T; Wang Y
    Nanotechnology; 2018 Dec; 29(49):494001. PubMed ID: 30215617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complex dislocation loop networks as natural extensions of the sink efficiency of saturated grain boundaries in irradiated metals.
    He S; Mang EH; Leff AC; Zhou X; Taheri ML; Marian J
    Sci Adv; 2024 May; 10(18):eadj8395. PubMed ID: 38701213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of Microstructure and Nanoindentation Hardness of C
    Liu G; Li Y; He Z; Chen Y; Cong S; Chen Z; Huang X; Zhang R; Ran G
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Study of Strain-Driven Nucleation and Extension of Deformed Grain: Phase Field Crystal and Continuum Modeling.
    Kong LY; Gao YJ; Deng QQ; Luo ZR; Lu YJ
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30249056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Special Grain Boundaries in Ultrafine-Grained Tungsten.
    Dudka OV; Ksenofontov VA; Sadanov EV; Starchenko IV; Mazilova TI; Mikhailovskij IM
    Nanoscale Res Lett; 2016 Dec; 11(1):332. PubMed ID: 27416905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material.
    Luo L; Shi J; Lin J; Zan X; Zhu X; Xu Q; Wu Y
    Sci Rep; 2016 Sep; 6():32701. PubMed ID: 27596002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel.
    Barcellini C; Dumbill S; Jimenez-Melero E
    J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative SEM characterisation of ceramic target prior and after magnetron sputtering: a case study of aluminium zinc oxide.
    Jahangiri AR; Rajabi Kalvani P; Shapouri S; Sari A; ŢĂlu Ş; Jalili YS
    J Microsc; 2021 Mar; 281(3):190-201. PubMed ID: 32926411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of recovery and first recrystallisation kinetics in CGO Fe3%Si steels using misorientation-derived parameters (EBSD).
    Cruz-Gandarilla F; Bolmaro RE; Mendoza-León HF; Salcedo-Garrido AM; Cabañas-Moreno JG
    J Microsc; 2019 Sep; 275(3):133-148. PubMed ID: 31271444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel.
    Rahimi S; Engelberg DL; Duff JA; Marrow TJ
    J Microsc; 2009 Mar; 233(3):423-31. PubMed ID: 19250463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels.
    Aşık EE; Perdahcıoğlu ES; van den Boogaard T
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32290277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geometric and topological properties of the canonical grain-growth microstructure.
    Mason JK; Lazar EA; MacPherson RD; Srolovitz DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063308. PubMed ID: 26764854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A correlation between grain boundary character and deformation twin nucleation mechanism in coarse-grained high-Mn austenitic steel.
    Hung CY; Bai Y; Shimokawa T; Tsuji N; Murayama M
    Sci Rep; 2021 Apr; 11(1):8468. PubMed ID: 33875690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.