These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34885589)

  • 41. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum.
    Wang L; Teng J; Liu P; Hirata A; Ma E; Zhang Z; Chen M; Han X
    Nat Commun; 2014 Jul; 5():4402. PubMed ID: 25030380
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys.
    Wróbel JS; Nguyen-Manh D; Kurzydłowski KJ; Dudarev SL
    J Phys Condens Matter; 2017 Apr; 29(14):145403. PubMed ID: 28177296
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unified Model for Size-Dependent to Size-Independent Transition in Yield Strength of Crystalline Metallic Materials.
    Liu W; Liu Y; Cheng Y; Chen L; Yu L; Yi X; Duan H
    Phys Rev Lett; 2020 Jun; 124(23):235501. PubMed ID: 32603175
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced Radiation Tolerance of Tungsten Nanoparticles to He Ion Irradiation.
    Aradi E; Lewis-Fell J; Harrison RW; Greaves G; Mir AH; Donnelly SE; Hinks JA
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30558254
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microstructure of a heavily irradiated metal exposed to a spectrum of atomic recoils.
    Boleininger M; Mason DR; Sand AE; Dudarev SL
    Sci Rep; 2023 Jan; 13(1):1684. PubMed ID: 36717656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preferential self-healing at grain boundaries in plasma-treated graphene.
    Vinchon P; Glad X; Robert Bigras G; Martel R; Stafford L
    Nat Mater; 2021 Jan; 20(1):49-54. PubMed ID: 32690911
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scale-Free Modeling of Coupled Evolution of Discrete Dislocation Bands and Multivariant Martensitic Microstructure.
    Levitas VI; Esfahani SE; Ghamarian I
    Phys Rev Lett; 2018 Nov; 121(20):205701. PubMed ID: 30500235
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interface microstructure effects on dynamic failure behavior of layered Cu/Ta microstructures.
    Kumar R; Chen J; Mishra A; Dongare AM
    Sci Rep; 2023 Jul; 13(1):11365. PubMed ID: 37443120
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative Study and Limits of Different Level-Set Formulations for the Modeling of Anisotropic Grain Growth.
    Murgas B; Florez S; Bozzolo N; Fausty J; Bernacki M
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct observation of oxygen-vacancy formation and structural changes in Bi
    Shi HL; Zou B; Li ZA; Luo MT; Wang WZ
    Beilstein J Nanotechnol; 2019; 10():1434-1442. PubMed ID: 31431855
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rotation-induced grain growth and stagnation in phase-field crystal models.
    Bjerre M; Tarp JM; Angheluta L; Mathiesen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):020401. PubMed ID: 24032765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Grain Refinement of a Powder Nickel-Base Superalloy Using Hot Deformation and Slow-Cooling.
    Fan X; Guo Z; Wang X; Yang J; Zou J
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322200
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of He-D Interaction on Irradiation-Induced Swelling in Fe9Cr Alloys.
    Wu H; Wang Z; Zhu T; Xu Q; Wang B; Xiao D; Cao X
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772196
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Tungsten Addition on the Microstructure and Corrosion Resistance of Fe-3.5B Alloy in Liquid Zinc.
    Liu X; Wang M; Yin F; Ouyang X; Li Z
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phase-transition-driven growth of compound semiconductor crystals from ordered metastable nanorods.
    Mainz R; Singh A; Levcenko S; Klaus M; Genzel C; Ryan KM; Unold T
    Nat Commun; 2014; 5():3133. PubMed ID: 24448477
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Micromechanism of Cold Deformation of Two-Phase Polycrystalline Ti⁻Al Alloy with Void.
    Feng R; Wang M; Li H; Qi Y; Wang Q; Rui Z
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621116
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the sampling of three-dimensional polycrystalline microstructures for distribution determination.
    Luan J; Liu G; Wang H; Ullah A
    J Microsc; 2011 Nov; 244(2):214-22. PubMed ID: 21810095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new approach to grain boundary engineering for nanocrystalline materials.
    Kobayashi S; Tsurekawa S; Watanabe T
    Beilstein J Nanotechnol; 2016; 7():1829-1849. PubMed ID: 28144533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phase-Field Simulation of Grain Boundary Evolution In Microstructures Containing Second-Phase Particles with Heterogeneous Thermal Properties.
    Flint TF; Sun YL; Xiong Q; Smith MC; Francis JA
    Sci Rep; 2019 Dec; 9(1):18426. PubMed ID: 31804553
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase-field modeling of microstructure evolutions in magnetic materials.
    Koyama T
    Sci Technol Adv Mater; 2008 Jan; 9(1):013006. PubMed ID: 27877924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.