These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34885951)

  • 41. FeNC Oxygen Reduction Electrocatalyst with High Utilization Penta-Coordinated Sites.
    Barrio J; Pedersen A; Sarma SC; Bagger A; Gong M; Favero S; Zhao CX; Garcia-Serres R; Li AY; Zhang Q; Jaouen F; Maillard F; Kucernak A; Stephens IEL; Titirici MM
    Adv Mater; 2023 Apr; 35(14):e2211022. PubMed ID: 36739474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. N-Doped Graphene Supported on Metal-Iron Carbide as a Catalyst for the Oxygen Reduction Reaction: Density Functional Theory Study.
    Patniboon T; Hansen HA
    ChemSusChem; 2020 Mar; 13(5):996-1005. PubMed ID: 31894657
    [TBL] [Abstract][Full Text] [Related]  

  • 43. (Fe,N-codoped carbon nanotube)/(Fe-based nanoparticle) nanohybrid derived from Fe-doped g-C
    Zhang Y; Jiang R; Wang Z; Xue Y; Sun J; Guo Y
    J Colloid Interface Sci; 2020 Nov; 579():391-400. PubMed ID: 32615482
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid Synthesis and Microenvironment Optimization of Hierarchical Porous Fe─N─C Catalysts for Enhanced ORR in Microbial Fuel Cells.
    Jiang B; Jiang N; Cui Y; Wang H; Zhang G; Li J; Zhang Y
    Adv Sci (Weinh); 2024 Aug; 11(31):e2402610. PubMed ID: 38887865
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bifunctional electrocatalysts for oxygen reduction and oxygen evolution: a theoretical study on 2D metallic WO
    Ma Y; Jin F; Hu YH
    Phys Chem Chem Phys; 2021 Jun; 23(24):13687-13695. PubMed ID: 34125123
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly Dispersive Cerium Atoms on Carbon Nanowires as Oxygen Reduction Reaction Electrocatalysts for Zn-Air Batteries.
    Li JC; Qin X; Xiao F; Liang C; Xu M; Meng Y; Sarnello E; Fang L; Li T; Ding S; Lyu Z; Zhu S; Pan X; Hou PX; Liu C; Lin Y; Shao M
    Nano Lett; 2021 May; 21(10):4508-4515. PubMed ID: 33998804
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi
    Chen K; Kim S; Rajendiran R; Prabakar K; Li G; Shi Z; Jeong C; Kang J; Li OL
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):977-990. PubMed ID: 32927178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sulfur doped FeNC catalysts derived from Dual-Ligand zeolitic imidazolate framework for the oxygen reduction reaction.
    Maouche C; Wang Y; Cheng C; Wang W; Li Y; Qureshi WA; Huang P; Amjad A; Zhou Y; Yang J
    J Colloid Interface Sci; 2022 Oct; 623():146-154. PubMed ID: 35576646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A DFT Study on the Activity Origin of Fe-N-C Sites for Oxygen Reduction Reaction.
    Zhang S; Qin Y; Ding S; Su Y
    Chemphyschem; 2022 Aug; 23(15):e202200165. PubMed ID: 35513342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Bifunctional Highly Efficient FeN
    Li E; Yang F; Wu Z; Wang Y; Ruan M; Song P; Xing W; Xu W
    Small; 2018 Feb; 14(8):. PubMed ID: 29323454
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrating PGM-Free Catalysts into Catalyst Layers and Proton Exchange Membrane Fuel Cell Devices.
    Banham D; Choi JY; Kishimoto T; Ye S
    Adv Mater; 2019 Aug; 31(31):e1804846. PubMed ID: 30605247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium.
    Zhang C; Sha J; Fei H; Liu M; Yazdi S; Zhang J; Zhong Q; Zou X; Zhao N; Yu H; Jiang Z; Ringe E; Yakobson BI; Dong J; Chen D; Tour JM
    ACS Nano; 2017 Jul; 11(7):6930-6941. PubMed ID: 28656759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Atomic-Level Fe-N-C Coupled with Fe
    Sun X; Wei P; Gu S; Zhang J; Jiang Z; Wan J; Chen Z; Huang L; Xu Y; Fang C; Li Q; Han J; Huang Y
    Small; 2020 Feb; 16(6):e1906057. PubMed ID: 31885216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structurally Modulated Graphitic Carbon Nanofiber and Heteroatom (N,F) Engineering toward Metal-Free ORR Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells.
    Akula S; Sahu AK
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11438-11449. PubMed ID: 32031776
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction.
    Yang L; Xu G; Ban J; Zhang L; Xu G; Lv Y; Jia D
    J Colloid Interface Sci; 2019 Feb; 535():415-424. PubMed ID: 30317082
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives.
    Shah SSA; Najam T; Bashir MS; Javed MS; Rahman AU; Luque R; Bao SJ
    Small; 2022 May; 18(18):e2106279. PubMed ID: 35338585
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction.
    Park JE; Jang YJ; Kim YJ; Song MS; Yoon S; Kim DH; Kim SJ
    Phys Chem Chem Phys; 2014 Jan; 16(1):103-9. PubMed ID: 24220278
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitrogen-Doped Carbon Activated in Situ by Embedded Nickel through the Mott-Schottky Effect for the Oxygen Reduction Reaction.
    Chen T; Guo S; Yang J; Xu Y; Sun J; Wei D; Chen Z; Zhao B; Ding W
    Chemphyschem; 2017 Dec; 18(23):3454-3461. PubMed ID: 28906066
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-Atom Alloys for the Electrochemical Oxygen Reduction Reaction.
    Darby MT; Stamatakis M
    Chemphyschem; 2021 Mar; 22(5):499-508. PubMed ID: 33387446
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitrogen and Fluorine-Codoped Porous Carbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells.
    Lv Y; Yang L; Cao D
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32859-32867. PubMed ID: 28892348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.