These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 34885953)

  • 21. Identification of the monolayer thickness difference in a mechanically exfoliated thick flake of hexagonal boron nitride and graphite for van der Waals heterostructures.
    Hattori Y; Taniguchi T; Watanabe K; Kitamura M
    Nanotechnology; 2023 May; 34(29):. PubMed ID: 37084717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-dimensional talc as a van der Waals material for solid lubrication at the nanoscale.
    Vasić B; Czibula C; Kratzer M; R A Neves B; Matković A; Teichert C
    Nanotechnology; 2021 Apr; 32(26):. PubMed ID: 33735842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic Proximity Effect in Graphene/CrBr
    Tang C; Zhang Z; Lai S; Tan Q; Gao WB
    Adv Mater; 2020 Apr; 32(16):e1908498. PubMed ID: 32130750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials.
    Kang J; Sangwan VK; Wood JD; Hersam MC
    Acc Chem Res; 2017 Apr; 50(4):943-951. PubMed ID: 28240855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Iwasaki T; Endo K; Watanabe E; Tsuya D; Morita Y; Nakaharai S; Noguchi Y; Wakayama Y; Watanabe K; Taniguchi T; Moriyama S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8533-8538. PubMed ID: 32027115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials.
    Shim J; Bae SH; Kong W; Lee D; Qiao K; Nezich D; Park YJ; Zhao R; Sundaram S; Li X; Yeon H; Choi C; Kum H; Yue R; Zhou G; Ou Y; Lee K; Moodera J; Zhao X; Ahn JH; Hinkle C; Ougazzaden A; Kim J
    Science; 2018 Nov; 362(6415):665-670. PubMed ID: 30309906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures.
    Zatko V; Dubois SM; Godel F; Carrétéro C; Sander A; Collin S; Galbiati M; Peiro J; Panciera F; Patriarche G; Brus P; Servet B; Charlier JC; Martin MB; Dlubak B; Seneor P
    ACS Nano; 2021 Apr; 15(4):7279-7289. PubMed ID: 33755422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum magnetic phenomena in engineered heterointerface of low-dimensional van der Waals and non-van der Waals materials.
    Gogoi L; Gao W; Ajayan PM; Deb P
    Phys Chem Chem Phys; 2023 Jan; 25(3):1430-1456. PubMed ID: 36601788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled Sonication as a Route to in-situ Graphene Flake Size Control.
    Turner P; Hodnett M; Dorey R; Carey JD
    Sci Rep; 2019 Jun; 9(1):8710. PubMed ID: 31213655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Photoluminescence of Multiple Two-Dimensional van der Waals Heterostructures Fabricated by Layer-by-Layer Oxidation of MoS
    Kang S; Kim YS; Jeong JH; Kwon J; Kim JH; Jung Y; Kim JC; Kim B; Bae SH; Huang PY; Hone JC; Jeong HY; Park JW; Lee CH; Lee GH
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1245-1252. PubMed ID: 33356110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Location-selective growth of two-dimensional metallic/semiconducting transition metal dichalcogenide heterostructures.
    Gong X; Zhao X; Pam ME; Yao H; Li Z; Geng D; Pennycook SJ; Shi Y; Yang HY
    Nanoscale; 2019 Mar; 11(10):4183-4189. PubMed ID: 30789188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exfoliation Behavior of van der Waals Strings: Case Study of Bi
    Dhar N; Syed N; Mohiuddin M; Jannat A; Zavabeti A; Zhang BY; Datta RS; Atkin P; Mahmood N; Esrafilzadeh D; Daeneke T; Kalantar-Zadeh K
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42603-42611. PubMed ID: 30426735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemically Exfoliated VSe
    Yu W; Li J; Herng TS; Wang Z; Zhao X; Chi X; Fu W; Abdelwahab I; Zhou J; Dan J; Chen Z; Chen Z; Li Z; Lu J; Pennycook SJ; Feng YP; Ding J; Loh KP
    Adv Mater; 2019 Oct; 31(40):e1903779. PubMed ID: 31423650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene.
    Li Z; Young RJ; Backes C; Zhao W; Zhang X; Zhukov AA; Tillotson E; Conlan AP; Ding F; Haigh SJ; Novoselov KS; Coleman JN
    ACS Nano; 2020 Sep; 14(9):10976-10985. PubMed ID: 32598132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemically exfoliated thin Bi
    Antonova IV; Nebogatikova NA; Kokh KA; Kustov DA; Soots RA; Golyashov VA; Tereshchenko OE
    Nanotechnology; 2020 Mar; 31(12):125602. PubMed ID: 31778984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exchange Bias in Molecule/Fe
    Jo J; Calavalle F; Martín-García B; Tezze D; Casanova F; Chuvilin A; Hueso LE; Gobbi M
    Adv Mater; 2022 May; 34(21):e2200474. PubMed ID: 35334502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical Vapor Transport Growth of Antiferromagnetic CrCl
    Wang J; Ahmadi Z; Lujan D; Choe J; Taniguchi T; Watanabe K; Li X; Shield JE; Hong X
    Adv Sci (Weinh); 2023 Jan; 10(3):e2203548. PubMed ID: 36453569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High mobility in a van der Waals layered antiferromagnetic metal.
    Lei S; Lin J; Jia Y; Gray M; Topp A; Farahi G; Klemenz S; Gao T; Rodolakis F; McChesney JL; Ast CR; Yazdani A; Burch KS; Wu S; Ong NP; Schoop LM
    Sci Adv; 2020 Feb; 6(6):eaay6407. PubMed ID: 32083184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal Fe
    May AF; Ovchinnikov D; Zheng Q; Hermann R; Calder S; Huang B; Fei Z; Liu Y; Xu X; McGuire MA
    ACS Nano; 2019 Apr; 13(4):4436-4442. PubMed ID: 30865426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile Exfoliation for High-Quality Molybdenum Disulfide Nanoflakes and Relevant Field-Effect Transistors Developed With Thermal Treatment.
    Zhang Y; Chen X; Zhang H; Hu S; Zhao G; Zhang M; Qin W; Wang Z; Huang X; Wang J
    Front Chem; 2021; 9():650901. PubMed ID: 33981671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.