These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3488749)

  • 1. The role of the dopaminergic projections in MFB self-stimulation.
    Gallistel CR
    Behav Brain Res; 1986 Jun; 20(3):313-21. PubMed ID: 3488749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the dopaminergic projections in MFB self-stimulation.
    Gallistel CR
    Behav Brain Res; 1986 Nov; 22(2):97-105. PubMed ID: 3491613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forebrain origins and terminations of the medial forebrain bundle metabolically activated by rewarding stimulation or by reward-blocking doses of pimozide.
    Gallistel CR; Gomita Y; Yadin E; Campbell KA
    J Neurosci; 1985 May; 5(5):1246-61. PubMed ID: 3873523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative determination of the effects of catecholaminergic agonists and antagonists on the rewarding efficacy of brain stimulation.
    Gallistel CR; Freyd G
    Pharmacol Biochem Behav; 1987 Apr; 26(4):731-41. PubMed ID: 3602032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Psychophysical inference of frequency-following fidelity in the neural substrate for brain stimulation reward.
    Solomon RB; Trujillo-Pisanty I; Conover K; Shizgal P
    Behav Brain Res; 2015 Oct; 292():327-41. PubMed ID: 26057357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neural substrates for the rewarding and dopamine-releasing effects of medial forebrain bundle stimulation have partially discrepant frequency responses.
    Cossette MP; Conover K; Shizgal P
    Behav Brain Res; 2016 Jan; 297():345-58. PubMed ID: 26477378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotine and brain-stimulation reward: interactions with morphine, amphetamine and pimozide.
    Huston-Lyons D; Sarkar M; Kornetsky C
    Pharmacol Biochem Behav; 1993 Oct; 46(2):453-7. PubMed ID: 8265701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Destruction of the medial forebrain bundle caudal to the site of stimulation reduces rewarding efficacy but destruction rostrally does not.
    Gallistel CR; Leon M; Lim BT; Sim JC; Waraczynski M
    Behav Neurosci; 1996 Aug; 110(4):766-90. PubMed ID: 8864268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence implicating descending fibers in self-stimulation of the medial forebrain bundle.
    Bielajew C; Shizgal P
    J Neurosci; 1986 Apr; 6(4):919-29. PubMed ID: 3486258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous rate-independent and rate-dependent assessment of intracranial self-stimulation: evidence for the direct involvement of dopamine in brain reinforcement mechanisms.
    Zarevics P; Setler PE
    Brain Res; 1979 Jun; 169(3):499-512. PubMed ID: 312681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of feeding and rewarding brain stimulation on lateral hypothalamic unit activity in freely moving rats.
    Sasaki K; Ono T; Muramoto K; Nishino H; Fukuda M
    Brain Res; 1984 Nov; 322(2):201-11. PubMed ID: 6150748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic intranigral administration of brain-derived neurotrophic factor produces striatal dopaminergic hypofunction in unlesioned adult rats and fails to attenuate the decline of striatal dopaminergic function following medial forebrain bundle transection.
    Lapchak PA; Beck KD; Araujo DM; Irwin I; Langston JW; Hefti F
    Neuroscience; 1993 Apr; 53(3):639-50. PubMed ID: 8098137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of reinforcement-blocking doses of pimozide on neural systems driven by rewarding stimulation of the MFB: a 14C-2-deoxyglucose analysis.
    Gomita Y; Gallistel CR
    Pharmacol Biochem Behav; 1982 Oct; 17(4):841-5. PubMed ID: 7178192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholinergic involvement in lateral hypothalamic rewarding brain stimulation.
    Yeomans JS; Kofman O; McFarlane V
    Brain Res; 1985 Mar; 329(1-2):19-26. PubMed ID: 3872153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological characteristics of neurons in forebrain regions implicated in self-stimulation of the medial forebrain bundle in the rat.
    Rompré PP; Shizgal P
    Brain Res; 1986 Feb; 364(2):338-49. PubMed ID: 3484994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basal forebrain knife cuts and medial forebrain bundle self-stimulation.
    Waraczynski MA
    Brain Res; 1988 Jan; 438(1-2):8-22. PubMed ID: 3257893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure of amygdaloid lesions to increase the threshold for self-stimulation of the lateral hypothalamus and ventral tegmental area.
    Waraczynski M; Ton MN; Shizgal P
    Behav Brain Res; 1990 Nov; 40(2):159-68. PubMed ID: 2285475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopaminergic terminal excitability following arrival of the nerve impulse: the influence of amphetamine and haloperidol.
    Takeuchi H; Young SJ; Groves PM
    Brain Res; 1982 Aug; 245(1):47-56. PubMed ID: 6288195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two substrates for medial forebrain bundle self-stimulation: myelinated axons and dopamine axons.
    Yeomans JS
    Neurosci Biobehav Rev; 1989; 13(2-3):91-8. PubMed ID: 2682408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of lesions of various medial forebrain bundle components on lateral hypothalamic self-stimulation.
    Stiglick A; White N
    Brain Res; 1977 Sep; 133(1):45-63. PubMed ID: 302729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.