These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 34887546)
1. Dormant phages communicate via arbitrium to control exit from lysogeny. Aframian N; Omer Bendori S; Kabel S; Guler P; Stokar-Avihail A; Manor E; Msaeed K; Lipsman V; Grinberg I; Mahagna A; Eldar A Nat Microbiol; 2022 Jan; 7(1):145-153. PubMed ID: 34887546 [TBL] [Abstract][Full Text] [Related]
2. AimR Adopts Preexisting Dimer Conformations for Specific Target Recognition in Lysis-Lysogeny Decisions of Pei K; Zhang J; Zou T; Liu Z Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572534 [TBL] [Abstract][Full Text] [Related]
3. Deciphering the Molecular Mechanism Underpinning Phage Arbitrium Communication Systems. Gallego Del Sol F; Penadés JR; Marina A Mol Cell; 2019 Apr; 74(1):59-72.e3. PubMed ID: 30745087 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of the arbitrium peptide-AimR communication system in the phage lysis-lysogeny decision. Wang Q; Guan Z; Pei K; Wang J; Liu Z; Yin P; Peng D; Zou T Nat Microbiol; 2018 Nov; 3(11):1266-1273. PubMed ID: 30224798 [TBL] [Abstract][Full Text] [Related]
5. Widespread Utilization of Peptide Communication in Phages Infecting Soil and Pathogenic Bacteria. Stokar-Avihail A; Tal N; Erez Z; Lopatina A; Sorek R Cell Host Microbe; 2019 May; 25(5):746-755.e5. PubMed ID: 31071296 [TBL] [Abstract][Full Text] [Related]
6. The arbitrium system controls prophage induction. Brady A; Quiles-Puchalt N; Gallego Del Sol F; Zamora-Caballero S; Felipe-Ruíz A; Val-Calvo J; Meijer WJJ; Marina A; Penadés JR Curr Biol; 2021 Nov; 31(22):5037-5045.e3. PubMed ID: 34562384 [TBL] [Abstract][Full Text] [Related]
7. Antagonistic interactions between phage and host factors control arbitrium lysis-lysogeny decision. Zamora-Caballero S; Chmielowska C; Quiles-Puchalt N; Brady A; Gallego Del Sol F; Mancheño-Bonillo J; Felipe-Ruíz A; Meijer WJJ; Penadés JR; Marina A Nat Microbiol; 2024 Jan; 9(1):161-172. PubMed ID: 38177302 [TBL] [Abstract][Full Text] [Related]
9. Repeated outbreaks drive the evolution of bacteriophage communication. Doekes HM; Mulder GA; Hermsen R Elife; 2021 Jan; 10():. PubMed ID: 33459590 [TBL] [Abstract][Full Text] [Related]
10. Arbitrium communication controls phage lysogeny through non-lethal modulation of a host toxin-antitoxin defence system. Guler P; Bendori SO; Borenstein T; Aframian N; Kessel A; Eldar A Nat Microbiol; 2024 Jan; 9(1):150-160. PubMed ID: 38177304 [TBL] [Abstract][Full Text] [Related]
11. Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communities. Dou C; Xiong J; Gu Y; Yin K; Wang J; Hu Y; Zhou D; Fu X; Qi S; Zhu X; Yao S; Xu H; Nie C; Liang Z; Yang S; Wei Y; Cheng W Nat Microbiol; 2018 Nov; 3(11):1285-1294. PubMed ID: 30323253 [TBL] [Abstract][Full Text] [Related]
12. Bacterial MazF/MazE toxin-antitoxin suppresses lytic propagation of arbitrium-containing phages. Cui Y; Su X; Wang C; Xu H; Hu D; Wang J; Pei K; Sun M; Zou T Cell Rep; 2022 Dec; 41(10):111752. PubMed ID: 36476854 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a unique repression system present in arbitrium phages of the SPbeta family. Brady A; Cabello-Yeves E; Gallego Del Sol F; Chmielowska C; Mancheño-Bonillo J; Zamora-Caballero S; Omer SB; Torres-Puente M; Eldar A; Quiles-Puchalt N; Marina A; Penadés JR Cell Host Microbe; 2023 Dec; 31(12):2023-2037.e8. PubMed ID: 38035880 [TBL] [Abstract][Full Text] [Related]
14. Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms. Bernard C; Li Y; Lopez P; Bapteste E ISME J; 2021 Feb; 15(2):545-549. PubMed ID: 33028977 [TBL] [Abstract][Full Text] [Related]
15. Prophages in Lactobacillus reuteri Are Associated with Fitness Trade-Offs but Can Increase Competitiveness in the Gut Ecosystem. Oh JH; Lin XB; Zhang S; Tollenaar SL; Özçam M; Dunphy C; Walter J; van Pijkeren JP Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31676478 [TBL] [Abstract][Full Text] [Related]
16. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation. Nawel Z; Rima O; Amira B Microb Pathog; 2022 Apr; 165():105490. PubMed ID: 35307601 [TBL] [Abstract][Full Text] [Related]
17. The Bacillus phage SPβ and its relatives: a temperate phage model system reveals new strains, species, prophage integration loci, conserved proteins and lysogeny management components. Kohm K; Floccari VA; Lutz VT; Nordmann B; Mittelstädt C; Poehlein A; Dragoš A; Commichau FM; Hertel R Environ Microbiol; 2022 Apr; 24(4):2098-2118. PubMed ID: 35293111 [TBL] [Abstract][Full Text] [Related]
18. Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny. Guerrero-Bustamante CA; Hatfull GF mBio; 2024 Feb; 15(2):e0326023. PubMed ID: 38236026 [TBL] [Abstract][Full Text] [Related]
19. Regulation of prophage induction and lysogenization by phage communication systems. Bruce JB; Lion S; Buckling A; Westra ER; Gandon S Curr Biol; 2021 Nov; 31(22):5046-5051.e7. PubMed ID: 34562385 [TBL] [Abstract][Full Text] [Related]
20. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages. Brady A; Felipe-Ruiz A; Gallego Del Sol F; Marina A; Quiles-Puchalt N; Penadés JR Annu Rev Microbiol; 2021 Oct; 75():563-581. PubMed ID: 34343015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]