These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34887738)

  • 1. A Biological Inspired Cognitive Framework for Memory-Based Multi-Sensory Joint Attention in Human-Robot Interactive Tasks.
    Eldardeer O; Gonzalez-Billandon J; Grasse L; Tata M; Rea F
    Front Neurorobot; 2021; 15():648595. PubMed ID: 34887738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Audio-visual perception system for a humanoid robotic head.
    Viciana-Abad R; Marfil R; Perez-Lorenzo JM; Bandera JP; Romero-Garces A; Reche-Lopez P
    Sensors (Basel); 2014 May; 14(6):9522-45. PubMed ID: 24878593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iCub-HRI: A Software Framework for Complex Human-Robot Interaction Scenarios on the iCub Humanoid Robot.
    Fischer T; Puigbò JY; Camilleri D; Nguyen PDH; Moulin-Frier C; Lallée S; Metta G; Prescott TJ; Demiris Y; Verschure PFMJ
    Front Robot AI; 2018; 5():22. PubMed ID: 33500909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot Faces that Follow Gaze Facilitate Attentional Engagement and Increase Their Likeability.
    Willemse C; Marchesi S; Wykowska A
    Front Psychol; 2018; 9():70. PubMed ID: 29459842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot.
    Tidoni E; Gergondet P; Kheddar A; Aglioti SM
    Front Neurorobot; 2014; 8():20. PubMed ID: 24987350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perception is Only Real When Shared: A Mathematical Model for Collaborative Shared Perception in Human-Robot Interaction.
    Matarese M; Rea F; Sciutti A
    Front Robot AI; 2022; 9():733954. PubMed ID: 35783020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interacting With Robots to Investigate the Bases of Social Interaction.
    Sciutti A; Sandini G
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2295-2304. PubMed ID: 29035218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bio-Inspired Endogenous Attention-Based Architecture for a Social Robot.
    Marques-Villarroya S; Castillo JC; Gamboa-Montero JJ; Sevilla-Salcedo J; Salichs MA
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward an Attentive Robotic Architecture: Learning-Based Mutual Gaze Estimation in Human-Robot Interaction.
    Lombardi M; Maiettini E; De Tommaso D; Wykowska A; Natale L
    Front Robot AI; 2022; 9():770165. PubMed ID: 35321344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Would a robot trust you? Developmental robotics model of trust and theory of mind.
    Vinanzi S; Patacchiola M; Chella A; Cangelosi A
    Philos Trans R Soc Lond B Biol Sci; 2019 Apr; 374(1771):20180032. PubMed ID: 30852993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neuron-inspired computational architecture for spatiotemporal visual processing: real-time visual sensory integration for humanoid robots.
    Holzbach A; Cheng G
    Biol Cybern; 2014 Jun; 108(3):249-59. PubMed ID: 24687170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event-driven visual attention for the humanoid robot iCub.
    Rea F; Metta G; Bartolozzi C
    Front Neurosci; 2013; 7():234. PubMed ID: 24379753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining joint attention with the use of humanoid robots-A new approach to study fundamental mechanisms of social cognition.
    Chevalier P; Kompatsiari K; Ciardo F; Wykowska A
    Psychon Bull Rev; 2020 Apr; 27(2):217-236. PubMed ID: 31848909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye contact during joint attention with a humanoid robot modulates oscillatory brain activity.
    Kompatsiari K; Bossi F; Wykowska A
    Soc Cogn Affect Neurosci; 2021 Mar; 16(4):383-392. PubMed ID: 33416877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot cognitive control with a neurophysiologically inspired reinforcement learning model.
    Khamassi M; Lallée S; Enel P; Procyk E; Dominey PF
    Front Neurorobot; 2011; 5():1. PubMed ID: 21808619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THERAPIST: Towards an Autonomous Socially Interactive Robot for Motor and Neurorehabilitation Therapies for Children.
    Calderita LV; Manso LJ; Bustos P; Suárez-Mejías C; Fernández F; Bandera A
    JMIR Rehabil Assist Technol; 2014 Oct; 1(1):e1. PubMed ID: 28582242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.