BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34887841)

  • 1. Overlapping Roles of Yeast Transporters Aqr1, Qdr2, and Qdr3 in Amino Acid Excretion and Cross-Feeding of Lactic Acid Bacteria.
    Kapetanakis GC; Gournas C; Prévost M; Georis I; André B
    Front Microbiol; 2021; 12():752742. PubMed ID: 34887841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of QDR genes in a bioethanol-producing yeast strain reduces propagation of contaminating lactic acid bacteria.
    Kapetanakis GC; Sousa LS; Felten C; Mues L; Gabant P; Van Nedervelde L; Georis I; André B
    Sci Rep; 2023 Mar; 13(1):4986. PubMed ID: 36973391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae Aqr1 is an internal-membrane transporter involved in excretion of amino acids.
    Velasco I; Tenreiro S; Calderon IL; André B
    Eukaryot Cell; 2004 Dec; 3(6):1492-503. PubMed ID: 15590823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast response and tolerance to polyamine toxicity involving the drug : H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4.
    Teixeira MC; Cabrito TR; Hanif ZM; Vargas RC; Tenreiro S; Sá-Correia I
    Microbiology (Reading); 2011 Apr; 157(Pt 4):945-956. PubMed ID: 21148207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells.
    Vargas RC; García-Salcedo R; Tenreiro S; Teixeira MC; Fernandes AR; Ramos J; Sá-Correia I
    Eukaryot Cell; 2007 Feb; 6(2):134-42. PubMed ID: 17189489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast multidrug transporter Qdr3 (Ybr043c): localization and role as a determinant of resistance to quinidine, barban, cisplatin, and bleomycin.
    Tenreiro S; Vargas RC; Teixeira MC; Magnani C; Sá-Correia I
    Biochem Biophys Res Commun; 2005 Feb; 327(3):952-9. PubMed ID: 15649438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae.
    Tenreiro S; Nunes PA; Viegas CA; Neves MS; Teixeira MC; Cabral MG; Sá-Correia I
    Biochem Biophys Res Commun; 2002 Apr; 292(3):741-8. PubMed ID: 11922628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key amino acid residues of the AGT1 permease required for maltotriose consumption and fermentation by Saccharomyces cerevisiae.
    Trichez D; Knychala MM; Figueiredo CM; Alves SL; da Silva MA; Miletti LC; de Araujo PS; Stambuk BU
    J Appl Microbiol; 2019 Feb; 126(2):580-594. PubMed ID: 30466168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response.
    Ríos G; Cabedo M; Rull B; Yenush L; Serrano R; Mulet JM
    FEMS Yeast Res; 2013 Feb; 13(1):97-106. PubMed ID: 23106982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting the yeast arginine can1 permease to a lysine permease.
    Ghaddar K; Krammer EM; Mihajlovic N; Brohée S; André B; Prévost M
    J Biol Chem; 2014 Mar; 289(10):7232-7246. PubMed ID: 24448798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.
    Dong SJ; Lin XH; Li H
    Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of lactobacilli on yeast-catalyzed ethanol fermentations.
    Narendranath NV; Hynes SH; Thomas KC; Ingledew WM
    Appl Environ Microbiol; 1997 Nov; 63(11):4158-63. PubMed ID: 9361399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.
    Basso TO; Gomes FS; Lopes ML; de Amorim HV; Eggleston G; Basso LC
    Antonie Van Leeuwenhoek; 2014 Jan; 105(1):169-77. PubMed ID: 24198118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free quantitative proteomic analysis reveals the lifestyle of Lactobacillus hordei in the presence of Sacchromyces cerevisiae.
    Xu D; Behr J; Geißler AJ; Bechtner J; Ludwig C; Vogel RF
    Int J Food Microbiol; 2019 Apr; 294():18-26. PubMed ID: 30711889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic switching of sake yeast by kimoto lactic acid bacteria through the [GAR
    Watanabe D; Kumano M; Sugimoto Y; Ito M; Ohashi M; Sunada K; Takahashi T; Yamada T; Takagi H
    J Biosci Bioeng; 2018 Nov; 126(5):624-629. PubMed ID: 29861316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiological and chemical parameters during cassava based-substrate fermentation using potential starter cultures of lactic acid bacteria and yeast.
    Freire AL; Ramos CL; Schwan RF
    Food Res Int; 2015 Oct; 76(Pt 3):787-795. PubMed ID: 28455064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture.
    Pereira GV; Miguel MG; Ramos CL; Schwan RF
    Appl Environ Microbiol; 2012 Aug; 78(15):5395-405. PubMed ID: 22636007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unravelling metabolic cross-feeding in a yeast-bacteria community using
    Gabrielli N; Maga-Nteve C; Kafkia E; Rettel M; Loeffler J; Kamrad S; Typas A; Patil KR
    Mol Syst Biol; 2023 Apr; 19(4):e11501. PubMed ID: 36779294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RELEASE OF INTROGENOUS SUBSTANCES BY BREWER'S YEAST. 3. SHOCK EXCRETION OF AMINO ACIDS.
    LEWIS MJ; PHAFF HJ
    J Bacteriol; 1964 Jun; 87(6):1389-96. PubMed ID: 14188718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of the
    Alves J; Sousa-Silva M; Soares P; Sauer M; Casal M; Soares-Silva I
    Comput Struct Biotechnol J; 2023; 21():2884-2898. PubMed ID: 37216016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.