These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 34888292)
1. Preparation and Application of Superhydrophobic Copper Mesh by Chemical Etching and Tong Q; Fan Z; Wang B; Liu Q; Bo Y; Qian L Front Chem; 2021; 9():737550. PubMed ID: 34888292 [TBL] [Abstract][Full Text] [Related]
2. Preparation of Parabolic Superhydrophobic Material for Oil-Water Separation. Qiao X; Yang C; Zhang Q; Yang S; Chen Y; Zhang D; Yuan X; Wang W; Zhao Y Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304798 [TBL] [Abstract][Full Text] [Related]
3. Electrochemically fast preparation of superhydrophobic copper mesh for high-efficiency oil spill adsorption and oil-water separation. Chen X; Gong X J Hazard Mater; 2024 Jul; 472():134465. PubMed ID: 38704904 [TBL] [Abstract][Full Text] [Related]
5. Facile Preparation of Ag-Coated Superhydrophobic/Superoleophilic Mesh for Efficient Oil/Water Separation with Excellent Corrosion Resistance. Du Z; Ding P; Tai X; Pan Z; Yang H Langmuir; 2018 Jun; 34(23):6922-6929. PubMed ID: 29723467 [TBL] [Abstract][Full Text] [Related]
6. Facile and scalable preparation of superhydrophobic brass mesh for efficient and rapid separation of oil and water. Asjadi F; Yaghoobi M Sci Rep; 2024 Jun; 14(1):12806. PubMed ID: 38834785 [TBL] [Abstract][Full Text] [Related]
7. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Dai C; Liu N; Cao Y; Chen Y; Lu F; Feng L Soft Matter; 2014 Oct; 10(40):8116-21. PubMed ID: 25177922 [TBL] [Abstract][Full Text] [Related]
8. In-situ oil-spill remediation by an electrodeposited superhydrophobic copper mesh. Kumari P; Kumar K; Kumar A Mar Pollut Bull; 2024 Jul; 204():116513. PubMed ID: 38795464 [TBL] [Abstract][Full Text] [Related]
9. Special wettable Azadirachta indica leaves like microarchitecture mesh filtration membrane produced by galvanic replacement reaction for layered oil/water separation. Baig N; Kammakakam I Chemosphere; 2023 Feb; 313():137544. PubMed ID: 36528151 [TBL] [Abstract][Full Text] [Related]
10. Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup. Kong LH; Chen XH; Yu LG; Wu ZS; Zhang PY ACS Appl Mater Interfaces; 2015 Feb; 7(4):2616-25. PubMed ID: 25590434 [TBL] [Abstract][Full Text] [Related]
11. Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation. Cao M; Luo X; Ren H; Feng J J Colloid Interface Sci; 2018 Feb; 512():567-574. PubMed ID: 29100161 [TBL] [Abstract][Full Text] [Related]
12. A robust superhydrophobic TiO Zhang H; Li Y; Lu Z; Chen L; Huang L; Fan M Sci Rep; 2017 Aug; 7(1):9428. PubMed ID: 28842635 [TBL] [Abstract][Full Text] [Related]
13. Facile approach to develop durable and reusable superhydrophobic/superoleophilic coatings for steel mesh surfaces. Nanda D; Sahoo A; Kumar A; Bhushan B J Colloid Interface Sci; 2019 Feb; 535():50-57. PubMed ID: 30278329 [TBL] [Abstract][Full Text] [Related]
14. Superhydrophobic MS@CuO@SA sponge for oil/water separation with excellent durability and reusability. Nguyen-Dinh MT; Bui TS; Lee BK; Masoumi Z Chemosphere; 2022 Apr; 292():133328. PubMed ID: 34929282 [TBL] [Abstract][Full Text] [Related]
15. Facile Construction and Fabrication of a Superhydrophobic and Super Oleophilic Stainless Steel Mesh for Separation of Water and Oil. Sun Y; Ke Z; Shen C; Wei Q; Sun R; Yang W; Yin Z Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630883 [TBL] [Abstract][Full Text] [Related]
16. Novel fabrication of a robust superhydrophobic PU@ZnO@Fe Tran VT; Lee BK Sci Rep; 2017 Dec; 7(1):17520. PubMed ID: 29235525 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of a biological metal-organic framework based superhydrophobic textile fabric for efficient oil/water separation. Mohamed ME; Abd-El-Nabey BA Sci Rep; 2022 Sep; 12(1):15483. PubMed ID: 36109549 [TBL] [Abstract][Full Text] [Related]
18. Facile Preparation of Photothermal Superhydrophobic Melamine Sponge Decorated with MXene and Lignin Particles for Efficient Oil/Water Separation, Fast Crude Oil Recovery, and Active Deicing. Wang M; Qiao L; Ma S; He Z Langmuir; 2024 Mar; 40(11):5978-5991. PubMed ID: 38443344 [TBL] [Abstract][Full Text] [Related]
19. A versatile approach to produce superhydrophobic materials used for oil-water separation. Zhu X; Zhang Z; Ge B; Men X; Zhou X; Xue Q J Colloid Interface Sci; 2014 Oct; 432():105-8. PubMed ID: 25086383 [TBL] [Abstract][Full Text] [Related]
20. Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. Wang C; Yao T; Wu J; Ma C; Fan Z; Wang Z; Cheng Y; Lin Q; Yang B ACS Appl Mater Interfaces; 2009 Nov; 1(11):2613-7. PubMed ID: 20356134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]