These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34888526)

  • 1. Responsive Janus Structural Color Hydrogel Micromotors for Label-Free Multiplex Assays.
    Wang H; Cai L; Zhang D; Shang L; Zhao Y
    Research (Wash D C); 2021; 2021():9829068. PubMed ID: 34888526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatocyte structural color-barcode micromotors for multiplex assays.
    Cai L; Wang H; Yu Y; Bian F; Wang Y; Shi K; Ye F; Zhao Y
    Natl Sci Rev; 2020 Mar; 7(3):644-651. PubMed ID: 34692083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Propelled Structural Color Cylindrical Micromotors for Heavy Metal Ions Adsorption and Screening.
    Shang Y; Cai L; Liu R; Zhang D; Zhao Y; Sun L
    Small; 2022 Nov; 18(46):e2204479. PubMed ID: 36207291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Design of Streamlined Alginate Hydrogel Micromotors with Run and Tumble Motion Patterns.
    Luan J; Kuijken PF; Chen W; Wang D; Charleston LA; Wilson DA
    Adv Sci (Weinh); 2023 Dec; 10(34):e2304995. PubMed ID: 37828568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma.
    Mou F; Chen C; Zhong Q; Yin Y; Ma H; Guan J
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9897-903. PubMed ID: 24869766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel-Based Stimuli-Responsive Micromotors for Biomedicine.
    Zhou H; Dong G; Gao G; Du R; Tang X; Ma Y; Li J
    Cyborg Bionic Syst; 2022; 2022():9852853. PubMed ID: 36285306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement and Development of Hydrogel Micromotors towards Biomedical Applications.
    Lin X; Xu B; Zhu H; Liu J; Solovev A; Mei Y
    Research (Wash D C); 2020; 2020():7659749. PubMed ID: 32728669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetallic Photo-Activated and Steerable Janus Micromotors as Active Microcleaners for Wastewater.
    Ikram M; Hu C; Zhou Y; Gao Y
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33439-33450. PubMed ID: 38889105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible fabrication of lipophilic-hydrophilic micromotors by off-chip photopolymerization of three-phase immiscible flow induced Janus droplet templates.
    Zhang K; Ren Y; Jiang T; Jiang H
    Anal Chim Acta; 2021 Oct; 1182():338955. PubMed ID: 34602209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suction-Cup-Inspired Adhesive Micromotors for Drug Delivery.
    Cai L; Zhao C; Chen H; Fan L; Zhao Y; Qian X; Chai R
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103384. PubMed ID: 34726356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D hierarchical LDHs-based Janus micro-actuator for detection and degradation of catechol.
    Xing N; Lyu Y; Li J; Ng DHL; Zhang X; Zhao W
    J Hazard Mater; 2023 Jan; 442():129914. PubMed ID: 36162304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances.
    Pourrahimi AM; Pumera M
    Nanoscale; 2018 Sep; 10(35):16398-16415. PubMed ID: 30178795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel micromotors with catalyst-containing liquid core and shell.
    Zhu H; Nawar S; Werner JG; Liu J; Huang G; Mei Y; Weitz DA; Solovev AA
    J Phys Condens Matter; 2019 May; 31(21):214004. PubMed ID: 30777936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Motility Visible Light-Driven Ag/AgCl Janus Micromotors.
    Wang X; Baraban L; Nguyen A; Ge J; Misko VR; Tempere J; Nori F; Formanek P; Huang T; Cuniberti G; Fassbender J; Makarov D
    Small; 2018 Nov; 14(48):e1803613. PubMed ID: 30369029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mg-Based Micromotors with Motion Responsive to Dual Stimuli.
    Xiong K; Xu L; Lin J; Mou F; Guan J
    Research (Wash D C); 2020; 2020():6213981. PubMed ID: 32832907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pH on the Motion of Catalytic Janus Particles and Tubular Bubble-Propelled Micromotors.
    Moo JG; Wang H; Pumera M
    Chemistry; 2016 Jan; 22(1):355-60. PubMed ID: 26526004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect.
    Li J; He X; Jiang H; Xing Y; Fu B; Hu C
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36027-36037. PubMed ID: 35916408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Propulsion of Urease-Powered Micromotors by Multilayered Assembly of Ureases on Janus Magnetic Microparticles.
    Luo M; Li S; Wan J; Yang C; Chen B; Guan J
    Langmuir; 2020 Feb; ():. PubMed ID: 32023066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-stimuli-responsive CuS-based micromotors for efficient photo-Fenton degradation of antibiotics.
    Ma E; Wang K; Hu Z; Wang H
    J Colloid Interface Sci; 2021 Dec; 603():685-694. PubMed ID: 34225072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of surface charge on the motion of light-activated Janus micromotors.
    Huang T; Ibarlucea B; Caspari A; Synytska A; Cuniberti G; de Graaf J; Baraban L
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):39. PubMed ID: 33755813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.