These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34888541)

  • 41. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasticity Enables Cooperation among Heterogeneous Cancer Cell Populations to Support Metastatic Fitness.
    LeBleu VS
    Cancer Res; 2022 May; 82(10):1870-1871. PubMed ID: 35570704
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of an automated combined positive score prediction pipeline using artificial intelligence on multiplexed immunofluorescence images.
    Vahadane A; Sharma S; Mandal D; Dabbeeru M; Jakthong J; Garcia-Guzman M; Majumdar S; Lee CW
    Comput Biol Med; 2023 Jan; 152():106337. PubMed ID: 36502695
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using Machine Learning Methods to Study Colorectal Cancer Tumor Micro-Environment and Its Biomarkers.
    Wei W; Li Y; Huang T
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Boolean-based systems biology approach to predict novel genes associated with cancer: Application to colorectal cancer.
    Nagaraj SH; Reverter A
    BMC Syst Biol; 2011 Feb; 5():35. PubMed ID: 21352556
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Edge biomarkers for classification and prediction of phenotypes.
    Zeng T; Zhang W; Yu X; Liu X; Li M; Liu R; Chen L
    Sci China Life Sci; 2014 Nov; 57(11):1103-14. PubMed ID: 25326072
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Network modeling of patients' biomolecular profiles for clinical phenotype/outcome prediction.
    Gliozzo J; Perlasca P; Mesiti M; Casiraghi E; Vallacchi V; Vergani E; Frasca M; Grossi G; Petrini A; Re M; Paccanaro A; Valentini G
    Sci Rep; 2020 Feb; 10(1):3612. PubMed ID: 32107391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images.
    Yellapragada B; Hornauer S; Snyder K; Yu S; Yiu G
    Ophthalmol Retina; 2022 Feb; 6(2):116-129. PubMed ID: 34217854
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-response.
    D'Orazio M; Murdocca M; Mencattini A; Casti P; Filippi J; Antonelli G; Di Giuseppe D; Comes MC; Di Natale C; Sangiuolo F; Martinelli E
    Sci Rep; 2022 May; 12(1):8545. PubMed ID: 35595808
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions.
    Mian S; Ball G; Hornbuckle J; Holding F; Carmichael J; Ellis I; Ali S; Li G; McArdle S; Creaser C; Rees R
    Proteomics; 2003 Sep; 3(9):1725-37. PubMed ID: 12973733
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Applying active learning to high-throughput phenotyping algorithms for electronic health records data.
    Chen Y; Carroll RJ; Hinz ER; Shah A; Eyler AE; Denny JC; Xu H
    J Am Med Inform Assoc; 2013 Dec; 20(e2):e253-9. PubMed ID: 23851443
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic gene regulatory network reconstruction and analysis based on clinical transcriptomic data of colorectal cancer.
    Deng AC; Sun XQ
    Math Biosci Eng; 2020 Apr; 17(4):3224-3239. PubMed ID: 32987526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting microsatellite instability and key biomarkers in colorectal cancer from H&E-stained images: achieving state-of-the-art predictive performance with fewer data using Swin Transformer.
    Guo B; Li X; Yang M; Jonnagaddala J; Zhang H; Xu XS
    J Pathol Clin Res; 2023 May; 9(3):223-235. PubMed ID: 36723384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Machine Learning and Artificial Intelligence-driven Spatial Analysis of the Tumor Immune Microenvironment in Pathology Slides.
    Xu H; Cong F; Hwang TH
    Eur Urol Focus; 2021 Jul; 7(4):706-709. PubMed ID: 34353733
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.
    Le DH; Verbeke L; Son LH; Chu DT; Pham VH
    BMC Bioinformatics; 2017 Nov; 18(1):479. PubMed ID: 29137601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identify and monitor clinical variation using machine intelligence: a pilot in colorectal surgery.
    Maheshwari K; Cywinski J; Mathur P; Cummings KC; Avitsian R; Crone T; Liska D; Campion FX; Ruetzler K; Kurz A
    J Clin Monit Comput; 2019 Aug; 33(4):725-731. PubMed ID: 30251058
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unsupervised learning methods for efficient geographic clustering and identification of disease disparities with applications to county-level colorectal cancer incidence in California.
    McMahon ME; Doroshenko L; Roostaei J; Cho H; Haider MA
    Health Care Manag Sci; 2022 Dec; 25(4):574-589. PubMed ID: 35732967
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma.
    Li MX; Sun XM; Cheng WG; Ruan HJ; Liu K; Chen P; Xu HJ; Gao SG; Feng XS; Qi YJ
    BMC Cancer; 2021 Aug; 21(1):906. PubMed ID: 34372798
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low expression of the dynamic network markers FOS/JUN in pre-deteriorated epithelial cells is associated with the progression of colorectal adenoma to carcinoma.
    Huang X; Han C; Zhong J; Hu J; Jin Y; Zhang Q; Luo W; Liu R; Ling F
    J Transl Med; 2023 Jan; 21(1):45. PubMed ID: 36698183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer.
    Qiu H; Ding S; Liu J; Wang L; Wang X
    Curr Oncol; 2022 Mar; 29(3):1773-1795. PubMed ID: 35323346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.