BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 34888542)

  • 1. A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy.
    Jang J; Wang C; Zhang X; Choi HJ; Pan X; Lin B; Yu Y; Whittle C; Ryan M; Chen Y; Lee K
    Cell Rep Methods; 2021 Nov; 1(7):. PubMed ID: 34888542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for live cell image segmentation to profile cellular morphodynamics using MARS-Net.
    Jang J; Hallinan C; Lee K
    STAR Protoc; 2022 Sep; 3(3):101469. PubMed ID: 35733606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-mentoring: A new deep learning pipeline to train a self-supervised U-net for few-shot learning of bio-artificial capsule segmentation.
    Deleruyelle A; Versari C; Klein J
    Comput Biol Med; 2023 Jan; 152():106454. PubMed ID: 36566624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation.
    Kromp F; Fischer L; Bozsaky E; Ambros IM; Dorr W; Beiske K; Ambros PF; Hanbury A; Taschner-Mandl S
    IEEE Trans Med Imaging; 2021 Jul; 40(7):1934-1949. PubMed ID: 33784615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-Net: A unified model for segmentation of various objects in microscopy images.
    Raza SEA; Cheung L; Shaban M; Graham S; Epstein D; Pelengaris S; Khan M; Rajpoot NM
    Med Image Anal; 2019 Feb; 52():160-173. PubMed ID: 30580111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dense gate network for biomedical image segmentation.
    Li D; Chen C; Li J; Wang L
    Int J Comput Assist Radiol Surg; 2020 Aug; 15(8):1247-1255. PubMed ID: 32270415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medical image diagnosis of prostate tumor based on PSP-Net+VGG16 deep learning network.
    Ye LY; Miao XY; Cai WS; Xu WJ
    Comput Methods Programs Biomed; 2022 Jun; 221():106770. PubMed ID: 35640389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Blood Cell Image Segmentation Method Based on Neural Ordinary Differential Equations.
    Li D; Tang P; Zhang R; Sun C; Li Y; Qian J; Liang Y; Yang J; Zhang L
    Comput Math Methods Med; 2021; 2021():5590180. PubMed ID: 34413897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DMCNN: A Deep Multiscale Convolutional Neural Network Model for Medical Image Segmentation.
    Teng L; Li H; Karim S
    J Healthc Eng; 2019; 2019():8597606. PubMed ID: 31949890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
    Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G
    Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation.
    Ryu J; Rehman MU; Nizami IF; Chong KT
    Comput Biol Med; 2023 Sep; 163():107132. PubMed ID: 37343468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generative Adversarial Network Based Automatic Segmentation of Corneal Subbasal Nerves on In Vivo Confocal Microscopy Images.
    Yildiz E; Arslan AT; Yildiz Tas A; Acer AF; Demir S; Sahin A; Erol Barkana D
    Transl Vis Sci Technol; 2021 May; 10(6):33. PubMed ID: 34038501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
    Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ
    Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep Learning Pipeline for Nucleus Segmentation.
    Zaki G; Gudla PR; Lee K; Kim J; Ozbun L; Shachar S; Gadkari M; Sun J; Fraser IDC; Franco LM; Misteli T; Pegoraro G
    Cytometry A; 2020 Dec; 97(12):1248-1264. PubMed ID: 33141508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion of encoder-decoder deep networks improves delineation of multiple nuclear phenotypes.
    Khoshdeli M; Winkelmaier G; Parvin B
    BMC Bioinformatics; 2018 Aug; 19(1):294. PubMed ID: 30086715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.