These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34888543)

  • 1. Uncovering spatial representations from spatiotemporal patterns of rodent hippocampal field potentials.
    Cao L; Varga V; Chen ZS
    Cell Rep Methods; 2021 Nov; 1(7):. PubMed ID: 34888543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based feature extraction for prediction and interpretation of sharp-wave ripples in the rodent hippocampus.
    Navas-Olive A; Amaducci R; Jurado-Parras MT; Sebastian ER; de la Prida LM
    Elife; 2022 Sep; 11():. PubMed ID: 36062906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Position Decoding Methods Based on Fluorescence Calcium Imaging in the Mouse Hippocampus.
    Tu M; Zhao R; Adler A; Gan WB; Chen ZS
    Neural Comput; 2020 Jun; 32(6):1144-1167. PubMed ID: 32343646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Readout of Large-Scale Unsorted Neural Ensemble Place Codes.
    Hu S; Ciliberti D; Grosmark AD; Michon F; Ji D; Penagos H; Buzsáki G; Wilson MA; Kloosterman F; Chen Z
    Cell Rep; 2018 Dec; 25(10):2635-2642.e5. PubMed ID: 30517852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retuning of hippocampal representations during sleep.
    Maboudi K; Giri B; Miyawaki H; Kemere C; Diba K
    Nature; 2024 May; 629(8012):630-638. PubMed ID: 38720085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A large majority of awake hippocampal sharp-wave ripples feature spatial trajectories with momentum.
    Krause EL; Drugowitsch J
    Neuron; 2022 Feb; 110(4):722-733.e8. PubMed ID: 34863366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local Field Potentials Encode Place Cell Ensemble Activation during Hippocampal Sharp Wave Ripples.
    Taxidis J; Anastassiou CA; Diba K; Koch C
    Neuron; 2015 Aug; 87(3):590-604. PubMed ID: 26247865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice.
    Meier K; Merseburg A; Isbrandt D; Marguet SL; Morellini F
    J Neurosci; 2020 Sep; 40(37):7105-7118. PubMed ID: 32817247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering representations of sleep-associated hippocampal ensemble spike activity.
    Chen Z; Grosmark AD; Penagos H; Wilson MA
    Sci Rep; 2016 Aug; 6():32193. PubMed ID: 27573200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Awake hippocampal sharp-wave ripples support spatial memory.
    Jadhav SP; Kemere C; German PW; Frank LM
    Science; 2012 Jun; 336(6087):1454-8. PubMed ID: 22555434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
    Wang DV; Ikemoto S
    J Neurosci; 2016 Oct; 36(41):10663-10672. PubMed ID: 27733616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disrupting ripples: Methods, results, and caveats in closed-loop approaches in rodents.
    Aleman-Zapata A; van der Meij J; Genzel L
    J Sleep Res; 2022 Dec; 31(6):e13532. PubMed ID: 34913214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition is a prevalent mode of activity in the neocortex around awake hippocampal ripples in mice.
    Karimi Abadchi J; Rezaei Z; Knöpfel T; McNaughton BL; Mohajerani MH
    Elife; 2023 Jan; 12():. PubMed ID: 36645126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended Poisson Gaussian-Process Latent Variable Model for Unsupervised Neural Decoding.
    Luo DD; Giri B; Diba K; Kemere C
    Neural Comput; 2024 Jul; 36(8):1449-1475. PubMed ID: 39028957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid classification of hippocampal replay content for real-time applications.
    Deng X; Liu DF; Karlsson MP; Frank LM; Eden UT
    J Neurophysiol; 2016 Nov; 116(5):2221-2235. PubMed ID: 27535369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended Quiet Awake Replay.
    Yamamoto J; Tonegawa S
    Neuron; 2017 Sep; 96(1):217-227.e4. PubMed ID: 28957670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivation of behavioral activity during sharp waves: a computational model for two stage hippocampal dynamics.
    Molter C; Sato N; Yamaguchi Y
    Hippocampus; 2007; 17(3):201-9. PubMed ID: 17294461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Place cells on a maze encode routes rather than destinations.
    Grieves RM; Wood ER; Dudchenko PA
    Elife; 2016 Jun; 5():. PubMed ID: 27282386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples.
    Jahnke S; Timme M; Memmesheimer RM
    J Neurosci; 2015 Dec; 35(49):16236-58. PubMed ID: 26658873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
    Tang W; Shin JD; Frank LM; Jadhav SP
    J Neurosci; 2017 Dec; 37(49):11789-11805. PubMed ID: 29089440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.