These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34888543)

  • 21. Sharp-wave ripple features in macaques depend on behavioral state and cell-type specific firing.
    Hussin AT; Leonard TK; Hoffman KL
    Hippocampus; 2020 Jan; 30(1):50-59. PubMed ID: 30371963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep.
    Brandon MP; Bogaard AR; Andrews CM; Hasselmo ME
    Hippocampus; 2012 Mar; 22(3):604-18. PubMed ID: 21509854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observational learning promotes hippocampal remote awake replay toward future reward locations.
    Mou X; Pokhrel A; Suresh P; Ji D
    Neuron; 2022 Mar; 110(5):891-902.e7. PubMed ID: 34965381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.
    Haggerty DC; Ji D
    J Neurophysiol; 2014 Oct; 112(7):1763-74. PubMed ID: 25008411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hippocampal ripples as a mode of communication with cortical and subcortical areas.
    Todorova R; Zugaro M
    Hippocampus; 2020 Jan; 30(1):39-49. PubMed ID: 30069976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling awake hippocampal reactivations with model-based bidirectional search.
    Khamassi M; Girard B
    Biol Cybern; 2020 Apr; 114(2):231-248. PubMed ID: 32065253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.
    Nokia MS; Mikkonen JE; Penttonen M; Wikgren J
    Front Behav Neurosci; 2012; 6():84. PubMed ID: 23316148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Network dynamics of hippocampal cell-assemblies resemble multiple spatial maps within single tasks.
    Jackson J; Redish AD
    Hippocampus; 2007; 17(12):1209-29. PubMed ID: 17764083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coordinated Emergence of Hippocampal Replay and Theta Sequences during Post-natal Development.
    Muessig L; Lasek M; Varsavsky I; Cacucci F; Wills TJ
    Curr Biol; 2019 Mar; 29(5):834-840.e4. PubMed ID: 30773370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Awake replay of remote experiences in the hippocampus.
    Karlsson MP; Frank LM
    Nat Neurosci; 2009 Jul; 12(7):913-8. PubMed ID: 19525943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A cortical-hippocampal-cortical loop of information processing during memory consolidation.
    Rothschild G; Eban E; Frank LM
    Nat Neurosci; 2017 Feb; 20(2):251-259. PubMed ID: 27941790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoding route selection of pigeon during goal-directed behavior: A joint spike-LFP study.
    Cheng S; Li M; Fan J; Shang Z; Wan H
    Behav Brain Res; 2021 Jul; 409():113289. PubMed ID: 33836168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Progress in the encoding characteristics and mechanisms of hippocampal neural assemble sequences in spatial memory].
    Zhang YY; Zhu N; Yang JJ; Zheng CG
    Sheng Li Xue Bao; 2020 Dec; 72(6):793-803. PubMed ID: 33349838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How our understanding of memory replay evolves.
    Chen ZS; Wilson MA
    J Neurophysiol; 2023 Mar; 129(3):552-580. PubMed ID: 36752404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus.
    Khodagholy D; Gelinas JN; Buzsáki G
    Science; 2017 Oct; 358(6361):369-372. PubMed ID: 29051381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus.
    Yang M; Logothetis NK; Eschenko O
    J Neurosci; 2019 Jan; 39(3):434-444. PubMed ID: 30459228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age-associated changes in waking hippocampal sharp-wave ripples.
    Cowen SL; Gray DT; Wiegand JL; Schimanski LA; Barnes CA
    Hippocampus; 2020 Jan; 30(1):28-38. PubMed ID: 29981255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time as the fourth dimension in the hippocampus.
    Banquet JP; Gaussier P; Cuperlier N; Hok V; Save E; Poucet B; Quoy M; Wiener SI
    Prog Neurobiol; 2021 Apr; 199():101920. PubMed ID: 33053416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples.
    Oliva A; Fernández-Ruiz A; Buzsáki G; Berényi A
    Neuron; 2016 Sep; 91(6):1342-1355. PubMed ID: 27593179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation and theta.
    Nokia MS; Waselius T; Sahramäki J; Penttonen M
    J Neurophysiol; 2020 May; 123(5):1671-1681. PubMed ID: 32208887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.