These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34888543)

  • 41. Delta Oscillations Coordinate Intracerebellar and Cerebello-Hippocampal Network Dynamics during Sleep.
    Torres-Herraez A; Watson TC; Rondi-Reig L
    J Neurosci; 2022 Mar; 42(11):2268-2281. PubMed ID: 35091502
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep.
    Mölle M; Yeshenko O; Marshall L; Sara SJ; Born J
    J Neurophysiol; 2006 Jul; 96(1):62-70. PubMed ID: 16611848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples.
    Pennartz CM; Lee E; Verheul J; Lipa P; Barnes CA; McNaughton BL
    J Neurosci; 2004 Jul; 24(29):6446-56. PubMed ID: 15269254
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sharp Wave Ripples during Visual Exploration in the Primate Hippocampus.
    Leonard TK; Mikkila JM; Eskandar EN; Gerrard JL; Kaping D; Patel SR; Womelsdorf T; Hoffman KL
    J Neurosci; 2015 Nov; 35(44):14771-82. PubMed ID: 26538648
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-structured spike sequences of hippocampal neuronal ensembles in awake animals.
    Sasaki T
    Neurosci Res; 2019 May; 142():1-6. PubMed ID: 29842894
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lamina-specific contribution of glutamatergic and GABAergic potentials to hippocampal sharp wave-ripple complexes.
    Schönberger J; Draguhn A; Both M
    Front Neural Circuits; 2014; 8():103. PubMed ID: 25202239
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hippocampal sharp wave/ripples during sleep for consolidation of associative memory.
    Ramadan W; Eschenko O; Sara SJ
    PLoS One; 2009 Aug; 4(8):e6697. PubMed ID: 19693273
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dissecting the Synapse- and Frequency-Dependent Network Mechanisms of In Vivo Hippocampal Sharp Wave-Ripples.
    Ramirez-Villegas JF; Willeke KF; Logothetis NK; Besserve M
    Neuron; 2018 Dec; 100(5):1224-1240.e13. PubMed ID: 30482688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3.
    Ecker A; Bagi B; Vértes E; Steinbach-Németh O; Karlócai MR; Papp OI; Miklós I; Hájos N; Freund TF; Gulyás AI; Káli S
    Elife; 2022 Jan; 11():. PubMed ID: 35040779
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events.
    Jadhav SP; Rothschild G; Roumis DK; Frank LM
    Neuron; 2016 Apr; 90(1):113-27. PubMed ID: 26971950
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impairment of Sharp-Wave Ripples in a Murine Model of Dravet Syndrome.
    Cheah CS; Lundstrom BN; Catterall WA; Oakley JC
    J Neurosci; 2019 Nov; 39(46):9251-9260. PubMed ID: 31537705
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice.
    Gillespie AK; Astudillo Maya DA; Denovellis EL; Liu DF; Kastner DB; Coulter ME; Roumis DK; Eden UT; Frank LM
    Neuron; 2021 Oct; 109(19):3149-3163.e6. PubMed ID: 34450026
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coherent Coding of Spatial Position Mediated by Theta Oscillations in the Hippocampus and Prefrontal Cortex.
    Zielinski MC; Shin JD; Jadhav SP
    J Neurosci; 2019 Jun; 39(23):4550-4565. PubMed ID: 30940717
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat.
    Chrobak JJ; Buzsáki G
    J Neurosci; 1996 May; 16(9):3056-66. PubMed ID: 8622135
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching.
    Kaefer K; Nardin M; Blahna K; Csicsvari J
    Neuron; 2020 Apr; 106(1):154-165.e6. PubMed ID: 32032512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unsupervised Methods for Detection of Neural States: Case Study of Hippocampal-Amygdala Interactions.
    Cocina F; Vitalis A; Caflisch A
    eNeuro; 2021; 8(6):. PubMed ID: 34544761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deciphering the role of CA1 inhibitory circuits in sharp wave-ripple complexes.
    Cutsuridis V; Taxidis J
    Front Syst Neurosci; 2013; 7():13. PubMed ID: 23653599
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep.
    Peyrache A; Khamassi M; Benchenane K; Wiener SI; Battaglia FP
    Nat Neurosci; 2009 Jul; 12(7):919-26. PubMed ID: 19483687
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decoding movement trajectories through a T-maze using point process filters applied to place field data from rat hippocampal region CA1.
    Huang Y; Brandon MP; Griffin AL; Hasselmo ME; Eden UT
    Neural Comput; 2009 Dec; 21(12):3305-34. PubMed ID: 19764871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.