These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34888543)

  • 61. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep.
    Villalobos C; Maldonado PE; Valdés JL
    PLoS One; 2017; 12(2):e0171304. PubMed ID: 28158285
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In Vivo.
    Gan J; Weng SM; Pernía-Andrade AJ; Csicsvari J; Jonas P
    Neuron; 2017 Jan; 93(2):308-314. PubMed ID: 28041883
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sequence learning and the role of the hippocampus in rodent navigation.
    Foster DJ; Knierim JJ
    Curr Opin Neurobiol; 2012 Apr; 22(2):294-300. PubMed ID: 22226994
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Clusterless Decoding of Position from Multiunit Activity Using a Marked Point Process Filter.
    Deng X; Liu DF; Kay K; Frank LM; Eden UT
    Neural Comput; 2015 Jul; 27(7):1438-60. PubMed ID: 25973549
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hippocampal replay of experience at real-world speeds.
    Denovellis EL; Gillespie AK; Coulter ME; Sosa M; Chung JE; Eden UT; Frank LM
    Elife; 2021 Sep; 10():. PubMed ID: 34570699
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The expanded circuitry of hippocampal ripples and replay.
    He H; Guan H; McHugh TJ
    Neurosci Res; 2023 Apr; 189():13-19. PubMed ID: 36572253
    [TBL] [Abstract][Full Text] [Related]  

  • 67. E-Cannula reveals anatomical diversity in sharp-wave ripples as a driver for the recruitment of distinct hippocampal assemblies.
    Liu X; Terada S; Ramezani M; Kim JH; Lu Y; Grosmark A; Losonczy A; Kuzum D
    Cell Rep; 2022 Oct; 41(1):111453. PubMed ID: 36198271
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterizing the dynamic frequency structure of fast oscillations in the rodent hippocampus.
    Nguyen DP; Kloosterman F; Barbieri R; Brown EN; Wilson MA
    Front Integr Neurosci; 2009; 3():11. PubMed ID: 19562084
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Many heads are better than one: A multiscale neural information feature fusion framework for spatial route selections decoding from multichannel neural recordings of pigeons.
    Li M; Cheng S; Fan J; Shang Z; Wan H
    Brain Res Bull; 2022 Jun; 184():1-12. PubMed ID: 35293319
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The role of replay and theta sequences in mediating hippocampal-prefrontal interactions for memory and cognition.
    Zielinski MC; Tang W; Jadhav SP
    Hippocampus; 2020 Jan; 30(1):60-72. PubMed ID: 29251801
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fear conditioning potentiates the hippocampal CA1 commissural pathway in vivo and increases awake phase sleep.
    Subramaniyan M; Manivannan S; Chelur V; Tsetsenis T; Jiang E; Dani JA
    Hippocampus; 2021 Oct; 31(10):1154-1175. PubMed ID: 34418215
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sharp-wave-ripple-associated activity in the medial prefrontal cortex supports spatial rule switching.
    den Bakker H; Van Dijck M; Sun JJ; Kloosterman F
    Cell Rep; 2023 Aug; 42(8):112959. PubMed ID: 37590137
    [TBL] [Abstract][Full Text] [Related]  

  • 73. On high-frequency field oscillations (>100 Hz) and the spectral leakage of spiking activity.
    Scheffer-Teixeira R; Belchior H; Leão RN; Ribeiro S; Tort AB
    J Neurosci; 2013 Jan; 33(4):1535-9. PubMed ID: 23345227
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evidence for Long-Timescale Patterns of Synaptic Inputs in CA1 of Awake Behaving Mice.
    Kolb I; Talei Franzesi G; Wang M; Kodandaramaiah SB; Forest CR; Boyden ES; Singer AC
    J Neurosci; 2018 Feb; 38(7):1821-1834. PubMed ID: 29279309
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Slow-γ Rhythms Coordinate Cingulate Cortical Responses to Hippocampal Sharp-Wave Ripples during Wakefulness.
    Remondes M; Wilson MA
    Cell Rep; 2015 Nov; 13(7):1327-1335. PubMed ID: 26549454
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Uncovering temporal structure in hippocampal output patterns.
    Maboudi K; Ackermann E; de Jong LW; Pfeiffer BE; Foster D; Diba K; Kemere C
    Elife; 2018 Jun; 7():. PubMed ID: 29869611
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dorsal and Ventral Hippocampal Sharp-Wave Ripples Activate Distinct Nucleus Accumbens Networks.
    Sosa M; Joo HR; Frank LM
    Neuron; 2020 Feb; 105(4):725-741.e8. PubMed ID: 31864947
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Closed-loop modulation of remote hippocampal representations with neurofeedback.
    Coulter ME; Gillespie AK; Chu J; Denovellis EL; Nguyen TTK; Liu DF; Wadhwani K; Sharma B; Wang K; Deng X; Eden UT; Kemere C; Frank LM
    bioRxiv; 2024 Oct; ():. PubMed ID: 38766135
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cholinergic modulation of hippocampal calcium activity across the sleep-wake cycle.
    Zhou H; Neville KR; Goldstein N; Kabu S; Kausar N; Ye R; Nguyen TT; Gelwan N; Hyman BT; Gomperts SN
    Elife; 2019 Mar; 8():. PubMed ID: 30843520
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.