BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34888574)

  • 1. Resource Resurgence from COVID-19 Waste via Pyrolysis: a Circular Economy Approach.
    Debnath B; Ghosh S; Dutta N
    Circ Econ Sustain; 2022; 2(1):211-220. PubMed ID: 34888574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COVID-19 and industrial waste mitigation via thermochemical technologies towards a circular economy: A state-of-the-art review.
    Felix CB; Ubando AT; Chen WH; Goodarzi V; Ashokkumar V
    J Hazard Mater; 2022 Feb; 423(Pt B):127215. PubMed ID: 34844348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality protocol and procedure development to define end-of-waste criteria for tire pyrolysis oil in the framework of circular economy strategy.
    Antoniou NA; Zorpas AA
    Waste Manag; 2019 Jul; 95():161-170. PubMed ID: 31351601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis: An effective technique for degradation of COVID-19 medical wastes.
    Dharmaraj S; Ashokkumar V; Pandiyan R; Halimatul Munawaroh HS; Chew KW; Chen WH; Ngamcharussrivichai C
    Chemosphere; 2021 Jul; 275():130092. PubMed ID: 33984908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis.
    N S
    Sci Total Environ; 2022 Feb; 809():151160. PubMed ID: 34695478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy.
    Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ
    Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular economy of medical waste: novel intelligent medical waste management framework based on extension linear Diophantine fuzzy FDOSM and neural network approach.
    Chew X; Khaw KW; Alnoor A; Ferasso M; Al Halbusi H; Muhsen YR
    Environ Sci Pollut Res Int; 2023 May; 30(21):60473-60499. PubMed ID: 37036648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovations and development of sustainable personal protective equipment: a path to a greener future.
    Lyu L; Bagchi M; Markoglou N; An C
    Environ Syst Res (Heidelb); 2024; 13(1):22. PubMed ID: 38911061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Healthcare waste in Bangladesh: Current status, the impact of Covid-19 and sustainable management with life cycle and circular economy framework.
    Dihan MR; Abu Nayeem SM; Roy H; Islam MS; Islam A; Alsukaibi AKD; Awual MR
    Sci Total Environ; 2023 May; 871():162083. PubMed ID: 36764546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19.
    Zhao X; Klemeš JJ; Fengqi You
    Renew Sustain Energy Rev; 2022 Jan; 153():111786. PubMed ID: 34690528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV.
    Dunkle MN; Pijcke P; Winniford WL; Ruitenbeek M; Bellos G
    J Chromatogr A; 2021 Jan; 1637():461837. PubMed ID: 33383237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waste management beyond the COVID-19 pandemic: Bibliometric and text mining analyses.
    Ranjbari M; Shams Esfandabadi Z; Gautam S; Ferraris A; Scagnelli SD
    Gondwana Res; 2023 Feb; 114():124-137. PubMed ID: 35153532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and feasibility study of spent coffee grounds upscaling via pyrolysis towards proposing an eco-social innovation circular economy solution.
    Matrapazi VK; Zabaniotou A
    Sci Total Environ; 2020 May; 718():137316. PubMed ID: 32092513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incineration of sewage sludge and recovery of residue ash as building material: A valuable option as a consequence of the COVID-19 pandemic.
    Ducoli S; Zacco A; Bontempi E
    J Environ Manage; 2021 Mar; 282():111966. PubMed ID: 33454533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis technologies for municipal solid waste: a review.
    Chen D; Yin L; Wang H; He P
    Waste Manag; 2014 Dec; 34(12):2466-86. PubMed ID: 25256662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste.
    Park C; Choi H; Andrew Lin KY; Kwon EE; Lee J
    Energy (Oxf); 2021 Sep; 230():120876. PubMed ID: 33994654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis-catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy.
    Liu Q; Jiang D; Zhou H; Yuan X; Wu C; Hu C; Luque R; Wang S; Chu S; Xiao R; Zhang H
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2305078120. PubMed ID: 37695879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy, environment and economy assessment of medical waste disposal technologies in China.
    Zhao HL; Wang L; Liu F; Liu HQ; Zhang N; Zhu YW
    Sci Total Environ; 2021 Nov; 796():148964. PubMed ID: 34273841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.