BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34888624)

  • 1. EnGRaiN: a supervised ensemble learning method for recovery of large-scale gene regulatory networks.
    Aluru M; Shrivastava H; Chockalingam SP; Shivakumar S; Aluru S
    Bioinformatics; 2022 Feb; 38(5):1312-1319. PubMed ID: 34888624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCPNet: a parallel maximum capacity-based genome-scale gene network construction framework.
    Pan TC; Chockalingam SP; Aluru M; Aluru S
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37289522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-supervised network inference using simulated gene expression dynamics.
    Nguyen P; Braun R
    Bioinformatics; 2018 Apr; 34(7):1148-1156. PubMed ID: 29186340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0.
    Skok Gibbs C; Jackson CA; Saldi GA; Tjärnberg A; Shah A; Watters A; De Veaux N; Tchourine K; Yi R; Hamamsy T; Castro DM; Carriero N; Gorissen BL; Gresham D; Miraldi ER; Bonneau R
    Bioinformatics; 2022 Apr; 38(9):2519-2528. PubMed ID: 35188184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurately modeling biased random walks on weighted networks using node2vec.
    Liu R; Hirn M; Krishnan A
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36688699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-Supervised Multi-View Learning for Gene Network Reconstruction.
    Ceci M; Pio G; Kuzmanovski V; Džeroski S
    PLoS One; 2015; 10(12):e0144031. PubMed ID: 26641091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AGRN: accurate gene regulatory network inference using ensemble machine learning methods.
    Alawad DM; Katebi A; Kabir MWU; Hoque MT
    Bioinform Adv; 2023; 3(1):vbad032. PubMed ID: 37038446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential network analysis by simultaneously considering changes in gene interactions and gene expression.
    Tu JJ; Ou-Yang L; Zhu Y; Yan H; Qin H; Zhang XF
    Bioinformatics; 2021 Dec; 37(23):4414-4423. PubMed ID: 34245246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study.
    Feltus FA; Ficklin SP; Gibson SM; Smith MC
    BMC Syst Biol; 2013 Jun; 7():44. PubMed ID: 23738693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach.
    Pio G; Malerba D; D'Elia D; Ceci M
    BMC Bioinformatics; 2014; 15 Suppl 1(Suppl 1):S4. PubMed ID: 24564296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.
    Chockalingam S; Aluru M; Aluru S
    Microarrays (Basel); 2016 Sep; 5(3):. PubMed ID: 27657141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GENECI: A novel evolutionary machine learning consensus-based approach for the inference of gene regulatory networks.
    Segura-Ortiz A; García-Nieto J; Aldana-Montes JF; Navas-Delgado I
    Comput Biol Med; 2023 Mar; 155():106653. PubMed ID: 36803795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach of gene regulatory network construction using mixed entropy optimizing context-related likelihood mutual information.
    Lei J; Cai Z; He X; Zheng W; Liu J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PAFway: pairwise associations between functional annotations in biological networks and pathways.
    Mahjoub M; Ezer D
    Bioinformatics; 2020 Dec; 36(19):4963-4964. PubMed ID: 32678900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network-based multi-task learning models for biomarker selection and cancer outcome prediction.
    Wang Z; He Z; Shah M; Zhang T; Fan D; Zhang W
    Bioinformatics; 2020 Mar; 36(6):1814-1822. PubMed ID: 31688914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble gene function prediction database reveals genes important for complex I formation in Arabidopsis thaliana.
    Hansen BO; Meyer EH; Ferrari C; Vaid N; Movahedi S; Vandepoele K; Nikoloski Z; Mutwil M
    New Phytol; 2018 Mar; 217(4):1521-1534. PubMed ID: 29205376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PoLoBag: Polynomial Lasso Bagging for signed gene regulatory network inference from expression data.
    Ghosh Roy G; Geard N; Verspoor K; He S
    Bioinformatics; 2021 Jan; 36(21):5187-5193. PubMed ID: 32697830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning gene regulatory networks from only positive and unlabeled data.
    Cerulo L; Elkan C; Ceccarelli M
    BMC Bioinformatics; 2010 May; 11():228. PubMed ID: 20444264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GENIUS: web server to predict local gene networks and key genes for biological functions.
    Puelma T; Araus V; Canales J; Vidal EA; Cabello JM; Soto A; Gutiérrez RA
    Bioinformatics; 2017 Mar; 33(5):760-761. PubMed ID: 27993775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.