BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34888759)

  • 1. Comparison of Five Near-Infrared Fluorescent Folate Conjugates in an Ovarian Cancer Model.
    García de Jalón E; Kleinmanns K; Fosse V; Davidson B; Bjørge L; Haug BE; McCormack E
    Mol Imaging Biol; 2023 Feb; 25(1):144-155. PubMed ID: 34888759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraoperative near-infrared imaging with receptor-specific versus passive delivery of fluorescent agents in pituitary adenomas.
    Cho SS; Jeon J; Buch L; Nag S; Nasrallah M; Low PS; Grady MS; Singhal S; Lee JYK
    J Neurosurg; 2018 Dec; 131(6):1974-1984. PubMed ID: 30554181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Intraoperative Detection of Ovarian Cancer by Folate Receptor Alpha Targeted Dual-Modality Imaging.
    Hekman MCH; Boerman OC; Bos DL; Massuger LFAG; Weil S; Grasso L; Rybinski KA; Oosterwijk E; Mulders PFA; Rijpkema M
    Mol Pharm; 2017 Oct; 14(10):3457-3463. PubMed ID: 28826214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Near-Infrared Imaging Agents Targeting the PTPmu Tumor Biomarker.
    Johansen ML; Vincent J; Rose M; Sloan AE; Brady-Kalnay SM
    Mol Imaging Biol; 2023 Aug; 25(4):744-757. PubMed ID: 36695968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17.
    Tummers QR; Hoogstins CE; Gaarenstroom KN; de Kroon CD; van Poelgeest MI; Vuyk J; Bosse T; Smit VT; van de Velde CJ; Cohen AF; Low PS; Burggraaf J; Vahrmeijer AL
    Oncotarget; 2016 May; 7(22):32144-55. PubMed ID: 27014973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vitro and In Vivo Evaluation of Targeted Fluorescent Imaging Agents for Diagnosis and Resection of Cancer.
    Yadav K; Krishnan MA; Chelvam V
    Curr Protoc; 2022 Dec; 2(12):e623. PubMed ID: 36571584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking Antibody Distribution with Near-Infrared Fluorescent Dyes: Impact of Dye Structure and Degree of Labeling on Plasma Clearance.
    Cilliers C; Nessler I; Christodolu N; Thurber GM
    Mol Pharm; 2017 May; 14(5):1623-1633. PubMed ID: 28294622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PET/NIR-II fluorescence imaging and image-guided surgery of glioblastoma using a folate receptor α-targeted dual-modal nanoprobe.
    Shi X; Xu P; Cao C; Cheng Z; Tian J; Hu Z
    Eur J Nucl Med Mol Imaging; 2022 Nov; 49(13):4325-4337. PubMed ID: 35838757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyaluronic acid formulation of near infrared fluorophores optimizes surgical imaging in a prostate tumor xenograft.
    Souchek JJ; Wojtynek NE; Payne WM; Holmes MB; Dutta S; Qi B; Datta K; LaGrange CA; Mohs AM
    Acta Biomater; 2018 Jul; 75():323-333. PubMed ID: 29890268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of C4'-O-Alkyl Linker on in Vivo Pharmacokinetics of Near-Infrared Cyanine/Monoclonal Antibody Conjugates.
    Sato K; Nagaya T; Nakamura Y; Harada T; Nani RR; Shaum JB; Gorka AP; Kim I; Paik CH; Choyke PL; Schnermann MJ; Kobayashi H
    Mol Pharm; 2015 Sep; 12(9):3303-11. PubMed ID: 26261913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared fluorescence imaging of both colorectal cancer and ureters using a low-dose integrin targeted probe.
    Verbeek FP; van der Vorst JR; Tummers QR; Boonstra MC; de Rooij KE; Löwik CW; Valentijn AR; van de Velde CJ; Choi HS; Frangioni JV; Vahrmeijer AL
    Ann Surg Oncol; 2014 Dec; 21 Suppl 4(0 4):S528-37. PubMed ID: 24515567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.
    Qi S; Miao Z; Liu H; Xu Y; Feng Y; Cheng Z
    Bioconjug Chem; 2012 Jun; 23(6):1149-56. PubMed ID: 22621238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NIRDye 812: A molecular platform tailored for multimodal bioimaging applications of targeted fluorescence- and photoacoustic-guided surgery.
    Hettie KS; Chin FT
    J Photochem Photobiol B; 2023 May; 242():112683. PubMed ID: 36934549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZW800-PEG: A Renal Clearable Zwitterionic Near-Infrared Fluorophore for Potential Clinical Translation.
    Yang C; Wang H; Yokomizo S; Hickey M; Chang H; Kang H; Fukuda T; Song MY; Lee SY; Park JW; Bao K; Choi HS
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):13847-13852. PubMed ID: 33857346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a novel ovarian cancer-specific fluorescent antibody probe for targeted near-infrared fluorescence imaging.
    Chen J; Zhang C; Guo Y; Chang X; Ma R; Ye X; Cheng H; Li Y; Cui H
    World J Surg Oncol; 2020 Apr; 18(1):66. PubMed ID: 32252772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates.
    Sato K; Gorka AP; Nagaya T; Michie MS; Nakamura Y; Nani RR; Coble VL; Vasalatiy OV; Swenson RE; Choyke PL; Schnermann MJ; Kobayashi H
    Mol Biosyst; 2016 Oct; 12(10):3046-56. PubMed ID: 27452807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor Targeting with Methotrexate-Conjugated Zwitterionic Near-Infrared Fluorophore for Precise Photothermal Therapy.
    Jo G; Kim EJ; Park MH; Hyun H
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo imaging of folate receptor positive tumor xenografts using novel 68Ga-NODAGA-folate conjugates.
    Fani M; Tamma ML; Nicolas GP; Lasri E; Medina C; Raynal I; Port M; Weber WA; Maecke HR
    Mol Pharm; 2012 May; 9(5):1136-45. PubMed ID: 22497506
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.