These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34889012)

  • 1. Surface Gelation on Disulfide Electrocatalysts in Lithium-Sulfur Batteries.
    Li XY; Feng S; Zhao M; Zhao CX; Chen X; Li BQ; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2022 Feb; 61(7):e202114671. PubMed ID: 34889012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulating Lithium Salt to Inhibit Surface Gelation on an Electrocatalyst for High-Energy-Density Lithium-Sulfur Batteries.
    Li XY; Feng S; Zhao CX; Cheng Q; Chen ZX; Sun SY; Chen X; Zhang XQ; Li BQ; Huang JQ; Zhang Q
    J Am Chem Soc; 2022 Aug; 144(32):14638-14646. PubMed ID: 35791913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries.
    Zhao M; Chen X; Li XY; Li BQ; Huang JQ
    Adv Mater; 2021 Apr; 33(13):e2007298. PubMed ID: 33586230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Electrocatalytic Model of the Sulfur Reduction Reaction in Lithium-Sulfur Batteries.
    Feng S; Fu ZH; Chen X; Li BQ; Peng HJ; Yao N; Shen X; Yu L; Gao YC; Zhang R; Zhang Q
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202211448. PubMed ID: 36314993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating Redox Kinetics of Sulfur Species Using Mott-Schottky Electrocatalysts for Advanced Lithium-Sulfur Batteries.
    Li Y; Wang W; Zhang B; Fu L; Wan M; Li G; Cai Z; Tu S; Duan X; Seh ZW; Jiang J; Sun Y
    Nano Lett; 2021 Aug; 21(15):6656-6663. PubMed ID: 34291943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mo
    Zhang YJ; Xing ZY; Wang WP; Gao N; Zhao J; Yue WC; Li X; Gao YB; Xin S; Li B; Wang B
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45651-45660. PubMed ID: 34533920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Production of Freestanding Few-Layer β
    Lin H; Shi H; Wang Z; Mu Y; Li S; Zhao J; Guo J; Yang B; Wu ZS; Liu F
    ACS Nano; 2021 Nov; 15(11):17327-17336. PubMed ID: 34549941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Energy-Density, Long-Life Lithium-Sulfur Batteries with Practically Necessary Parameters Enabled by Low-Cost Fe-Ni Nanoalloy Catalysts.
    He J; Bhargav A; Manthiram A
    ACS Nano; 2021 May; 15(5):8583-8591. PubMed ID: 33891408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Electrochemical Kinetics and Polysulfide Traps of Indium Nitride for Highly Stable Lithium-Sulfur Batteries.
    Zhang L; Chen X; Wan F; Niu Z; Wang Y; Zhang Q; Chen J
    ACS Nano; 2018 Sep; 12(9):9578-9586. PubMed ID: 30199634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating Electrocatalytic Li
    Shi Z; Sun Z; Cai J; Yang X; Wei C; Wang M; Ding Y; Sun J
    Adv Mater; 2021 Oct; 33(43):e2103050. PubMed ID: 34463382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li-S Batteries.
    Song Y; Zhao S; Chen Y; Cai J; Li J; Yang Q; Sun J; Liu Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5687-5694. PubMed ID: 30714710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress and Prospect of Organic Electrocatalysts in Lithium-Sulfur Batteries.
    Dong Y; Li T; Cai D; Yang S; Zhou X; Nie H; Yang Z
    Front Chem; 2021; 9():703354. PubMed ID: 34336789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of titanium-deficient anatase TiO
    Yang J; Xu L; Li S; Peng C
    Nanoscale; 2020 Feb; 12(7):4645-4654. PubMed ID: 32048678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mo
    Wang P; Wang H; Li N; Sun J; Hong B
    J Colloid Interface Sci; 2024 Mar; 658():497-505. PubMed ID: 38128193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Immobilized Molecular Electrocatalysts for High-Performance Lithium-Sulfur Batteries.
    Zhao CX; Li XY; Zhao M; Chen ZX; Song YW; Chen WJ; Liu JN; Wang B; Zhang XQ; Chen CM; Li BQ; Huang JQ; Zhang Q
    J Am Chem Soc; 2021 Dec; 143(47):19865-19872. PubMed ID: 34761937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium-Sulfur Batteries.
    Tian D; Song X; Qiu Y; Sun X; Jiang B; Zhao C; Zhang Y; Xu X; Fan L; Zhang N
    ACS Nano; 2021 Oct; 15(10):16515-16524. PubMed ID: 34590820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Undercoordination Chemistry of Sulfur Electrocatalyst in Lithium-Sulfur Batteries.
    Wang J; Li G; Zhang X; Zong K; Yang Y; Zhang X; Wang X; Chen Z
    Adv Mater; 2024 Apr; 36(14):e2311019. PubMed ID: 38135452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepwise Electrocatalysis as a Strategy against Polysulfide Shuttling in Li-S Batteries.
    Ye H; Sun J; Zhang S; Lin H; Zhang T; Yao Q; Lee JY
    ACS Nano; 2019 Dec; 13(12):14208-14216. PubMed ID: 31790591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Multifunctional Catalytic Interface: Toward Regulation of Polysulfide and Li
    Fan S; Huang S; Pam ME; Chen S; Wu Q; Hu J; Wang Y; Ang LK; Yan C; Shi Y; Yang HY
    Small; 2019 Dec; 15(51):e1906132. PubMed ID: 31756047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Effect of Molecular-Type Electrocatalysts with Ultrahigh Pore Volume Carbon Microspheres for Lithium-Sulfur Batteries.
    Lim WG; Mun Y; Cho A; Jo C; Lee S; Han JW; Lee J
    ACS Nano; 2018 Jun; 12(6):6013-6022. PubMed ID: 29746097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.