These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 3488904)
1. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Evidence for a shift in the midpoint potential of the dithiol redox center during turnover of the carrier. Lolkema JS; Robillard GT Eur J Biochem; 1986 Aug; 159(1):141-7. PubMed ID: 3488904 [TBL] [Abstract][Full Text] [Related]
2. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. EIIFru possesses a Zn2+-binding site and a dithiol/disulfide redox centre. Lolkema JS; ten Hoeve-Duurkens RH; Robillard GT Eur J Biochem; 1986 Feb; 154(3):651-6. PubMed ID: 3948872 [TBL] [Abstract][Full Text] [Related]
3. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Energetics of the phosphoryl group transfer from phosphoenolpyruvate to fructose. Lolkema JS; ten Hoeve-Duurkens RH; Robillard GT Eur J Biochem; 1986 Jan; 154(2):387-93. PubMed ID: 3484702 [TBL] [Abstract][Full Text] [Related]
4. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Mechanism for transfer of the phosphoryl group from phosphoenolpyruvate to fructose. Lolkema JS; ten Hoeve-Duurkens RH; Robillard GT Eur J Biochem; 1985 Jun; 149(3):625-31. PubMed ID: 3874060 [TBL] [Abstract][Full Text] [Related]
5. Phosphoenolpyruvate-dependent fructose phosphotransferase system in Rhodopseudomonas sphaeroides. The coupling between transport and phosphorylation in inside-out vesicles. Lolkema JS; Robillard GT Eur J Biochem; 1985 Feb; 147(1):69-75. PubMed ID: 3871694 [TBL] [Abstract][Full Text] [Related]
6. Bacterial phosphotransferase system: regulation of mannitol enzyme II activity by sulfhydryl oxidation. Grenier FC; Waygood EB; Saier MH Biochemistry; 1985 Jan; 24(1):47-51. PubMed ID: 3888258 [TBL] [Abstract][Full Text] [Related]
7. Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: purification and physicochemical and immunochemical characterization of a membrane-associated enzyme I. Brouwer M; Elferink MG; Robillard GT Biochemistry; 1982 Jan; 21(1):82-8. PubMed ID: 6277369 [TBL] [Abstract][Full Text] [Related]
8. Vicinal dithiol-disulfide distribution in the Escherichia coli mannitol specific carrier enzyme IImtl. Roossien FF; Robillard GT Biochemistry; 1984 Jan; 23(2):211-5. PubMed ID: 6365160 [TBL] [Abstract][Full Text] [Related]
9. Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: mechanism of phosphoryl-group transfer from phosphoenolpyruvate to HPr. Misset O; Robillard GT Biochemistry; 1982 Jun; 21(13):3136-42. PubMed ID: 7049237 [TBL] [Abstract][Full Text] [Related]
10. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function? Deutscher J; Kessler U; Alpert CA; Hengstenberg W Biochemistry; 1984 Sep; 23(19):4455-60. PubMed ID: 21370586 [TBL] [Abstract][Full Text] [Related]
11. Cytochrome b oxidation and reduction reactions in the ubiquinone-cytochrome b/c2 oxidoreductase from Rhodopseudomonas sphaeroides. O'Keefe DP; Dutton PL Biochim Biophys Acta; 1981 Mar; 635(1):149-66. PubMed ID: 6260161 [TBL] [Abstract][Full Text] [Related]
12. Properties of a Tn5 insertion mutant defective in the structural gene (fruA) of the fructose-specific phosphotransferase system of Rhodobacter capsulatus and cloning of the fru regulon. Daniels GA; Drews G; Saier MH J Bacteriol; 1988 Apr; 170(4):1698-703. PubMed ID: 2832374 [TBL] [Abstract][Full Text] [Related]
13. Modulation of the midpoint potential of the [2Fe-2S] Rieske iron sulfur center by Qo occupants in the bc1 complex. Shinkarev VP; Kolling DR; Miller TJ; Crofts AR Biochemistry; 2002 Dec; 41(48):14372-82. PubMed ID: 12450404 [TBL] [Abstract][Full Text] [Related]
14. Metabolism is required for chemotaxis to sugars in Rhodobacter sphaeroides. Jeziore-Sassoon Y; Hamblin PA; Bootle-Wilbraham CA; Poole PS; Armitage JP Microbiology (Reading); 1998 Jan; 144 ( Pt 1)():229-239. PubMed ID: 9467915 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system. Deutscher J; Sauerwald H J Bacteriol; 1986 Jun; 166(3):829-36. PubMed ID: 3011747 [TBL] [Abstract][Full Text] [Related]
17. Phosphoenolpyruvate-dependent phosphorylation site in enzyme IIIglc of the Escherichia coli phosphotransferase system. Dörschug M; Frank R; Kalbitzer HR; Hengstenberg W; Deutscher J Eur J Biochem; 1984 Oct; 144(1):113-9. PubMed ID: 6383826 [TBL] [Abstract][Full Text] [Related]
18. Fourier transform infrared spectroscopy and electrochemistry of the primary electron donor in Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers: vibrational modes of the pigments in situ and evidence for protein and water modes affected by P+ formation. Leonhard M; Mäntele W Biochemistry; 1993 May; 32(17):4532-8. PubMed ID: 8485130 [TBL] [Abstract][Full Text] [Related]
19. The pH dependence of the oxidation-reduction midpoint potential of cytochromes c2 in vivo. Prince RC; Dutton PL Biochim Biophys Acta; 1977 Mar; 459(3):573-7. PubMed ID: 14684 [TBL] [Abstract][Full Text] [Related]
20. Dimeric enzyme IImtl of the E. coli phosphoenolpyruvate-dependent phosphotransferase system. Cross-linking studies with bifunctional sulfhydryl reagents. Roossien FF; van Es-Spiekman W; Robillard GT FEBS Lett; 1986 Feb; 196(2):284-90. PubMed ID: 3512295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]