These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34889089)

  • 1. Fast Customization of Microneedle Arrays by Static Optical Projection Lithography.
    Liu X; Li R; Yuan X; Yang L; Luo J; Jiang X; Gou Z; Li B; Jiang X; Gou M
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60522-60530. PubMed ID: 34889089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Customization of Hollow Microneedle Patches for Insulin Delivery.
    Li R; Liu X; Yuan X; Wu S; Li L; Jiang X; Li B; Jiang X; Gou M
    Int J Bioprint; 2022; 8(2):553. PubMed ID: 35669318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed microneedle arrays for drug delivery.
    Li R; Zhang L; Jiang X; Li L; Wu S; Yuan X; Cheng H; Jiang X; Gou M
    J Control Release; 2022 Oct; 350():933-948. PubMed ID: 35977583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of microneedle arrays for hair regeneration in a controllable region.
    Li R; Yuan X; Zhang L; Jiang X; Li L; Zhang Y; Guo L; Dai X; Cheng H; Jiang X; Gou M
    Mol Biomed; 2023 Jan; 4(1):1. PubMed ID: 36602633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery.
    Xenikakis I; Tsongas K; Tzimtzimis EK; Zacharis CK; Theodoroula N; Kalogianni EP; Demiri E; Vizirianakis IS; Tzetzis D; Fatouros DG
    Int J Pharm; 2021 Mar; 597():120303. PubMed ID: 33540009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Photon Polymerisation 3D Printing of Microneedle Array Templates with Versatile Designs: Application in the Development of Polymeric Drug Delivery Systems.
    Cordeiro AS; Tekko IA; Jomaa MH; Vora L; McAlister E; Volpe-Zanutto F; Nethery M; Baine PT; Mitchell N; McNeill DW; Donnelly RF
    Pharm Res; 2020 Aug; 37(9):174. PubMed ID: 32856172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid fabrication of microneedles using magnetorheological drawing lithography.
    Chen Z; Ren L; Li J; Yao L; Chen Y; Liu B; Jiang L
    Acta Biomater; 2018 Jan; 65():283-291. PubMed ID: 29107057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger.
    Lim SH; Ng JY; Kang L
    Biofabrication; 2017 Jan; 9(1):015010. PubMed ID: 28071597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method of microneedle array fabrication for transdermal drug delivery.
    Kochhar JS; Goh WJ; Chan SY; Kang L
    Drug Dev Ind Pharm; 2013 Feb; 39(2):299-309. PubMed ID: 22519721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview on the advantages and limitations of 3D printing of microneedles.
    Ozyilmaz ED; Turan A; Comoglu T
    Pharm Dev Technol; 2021 Nov; 26(9):923-933. PubMed ID: 34369288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trilayer microneedle array assisted transdermal and intradermal delivery of dexamethasone.
    Li M; Vora LK; Peng K; Donnelly RF
    Int J Pharm; 2022 Jan; 612():121295. PubMed ID: 34785356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing applications for transdermal drug delivery.
    Economidou SN; Lamprou DA; Douroumis D
    Int J Pharm; 2018 Jun; 544(2):415-424. PubMed ID: 29355656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid fabrication method of a microneedle mold with controllable needle height and width.
    Lin YH; Lee IC; Hsu WC; Hsu CH; Chang KP; Gao SS
    Biomed Microdevices; 2016 Oct; 18(5):85. PubMed ID: 27565822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes.
    Wu M; Zhang Y; Huang H; Li J; Liu H; Guo Z; Xue L; Liu S; Lei Y
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111299. PubMed ID: 32919660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive Polymer-Coated 3D Printed Microneedles: Biocompatible Platforms for Minimally Invasive Biosensing Interfaces.
    Keirouz A; Mustafa YL; Turner JG; Lay E; Jungwirth U; Marken F; Leese HS
    Small; 2023 Apr; 19(14):e2206301. PubMed ID: 36596657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-Printed Hydrogel-Filled Microneedle Arrays.
    Barnum L; Quint J; Derakhshandeh H; Samandari M; Aghabaglou F; Farzin A; Abbasi L; Bencherif S; Memic A; Mostafalu P; Tamayol A
    Adv Healthc Mater; 2021 Jul; 10(13):e2001922. PubMed ID: 34050600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel-Forming Microneedle Arrays Made from Light-Responsive Materials for On-Demand Transdermal Drug Delivery.
    Hardy JG; LarraƱeta E; Donnelly RF; McGoldrick N; Migalska K; McCrudden MT; Irwin NJ; Donnelly L; McCoy CP
    Mol Pharm; 2016 Mar; 13(3):907-14. PubMed ID: 26795883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Printing Parameters for Digital Light Processing 3D Printing of Hollow Microneedle Arrays.
    Mathew E; Pitzanti G; Gomes Dos Santos AL; Lamprou DA
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery.
    Park JH; Yoon YK; Choi SO; Prausnitz MR; Allen MG
    IEEE Trans Biomed Eng; 2007 May; 54(5):903-13. PubMed ID: 17518288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing microneedle arrays for transdermal drug delivery: extension to non-square distribution of microneedles.
    Al-Qallaf B; Das DB
    J Drug Target; 2009 Feb; 17(2):108-22. PubMed ID: 19016071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.