These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 34889337)

  • 1. Eu-Doped MOF-based high-efficiency fluorescent sensor for detecting 2,4-dinitrophenol and 2,4,6-trinitrophenol simultaneously.
    Chen L; Cheng Z; Peng X; Qiu G; Wang L
    Anal Methods; 2021 Dec; 14(1):44-51. PubMed ID: 34889337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Highly Efficient Fluorescent Sensor Based on AIEgen for Detection of Nitrophenolic Explosives.
    Li D; Lv P; Han XW; Jia Z; Zheng M; Feng HT
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile fabrication of electrodeposited luminescent MOF thin films for selective and recyclable sensing of nitroaromatic explosives.
    Zhang F; Wang Y; Chu T; Wang Z; Li W; Yang Y
    Analyst; 2016 Jul; 141(14):4502-10. PubMed ID: 27158945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient smart-phone luminescent sensing detection based on new multifunctional Cd(II) luminescent coordination polymers.
    Sun X; Li M; Mao Y; Dong C; Meng X; Wang D; Zheng C
    Spectrochim Acta A Mol Biomol Spectrosc; 2025 Feb; 326():125248. PubMed ID: 39396422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AIE-active tetraphenylethene functionalized metal-organic framework for selective detection of nitroaromatic explosives and organic photocatalysis.
    Li QY; Ma Z; Zhang WQ; Xu JL; Wei W; Lu H; Zhao X; Wang XJ
    Chem Commun (Camb); 2016 Sep; 52(75):11284-11287. PubMed ID: 27709152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive and selective detection of nitrophenolic explosives by using nanospheres of a tetraphenylethylene macrocycle displaying aggregation-induced emission.
    Feng HT; Zheng YS
    Chemistry; 2014 Jan; 20(1):195-201. PubMed ID: 24285612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2,4,6-Trinitrophenol detection by a new portable sensing gadget using carbon dots as a fluorescent probe.
    Chen B; Chai S; Liu J; Liu C; Li Y; He J; Yu Z; Yang T; Feng C; Huang C
    Anal Bioanal Chem; 2019 Apr; 411(11):2291-2300. PubMed ID: 30826851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast, highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites fluorescent chemosensor for nitro explosives detection.
    Wang XS; Li L; Yuan DQ; Huang YB; Cao R
    J Hazard Mater; 2018 Feb; 344():283-290. PubMed ID: 29055832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a versatile and selective electrochemical sensor based on dummy molecularly imprinted PEDOT/laser-induced graphene for nitroaromatic explosives detection.
    Zheng C; Ling Y; Chen J; Yuan X; Li S; Zhang Z
    Environ Res; 2023 Nov; 236(Pt 2):116769. PubMed ID: 37517500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucopyranosyl-1,4-dihydropyridine as a new fluorescent chemosensor for selective detection of 2,4,6-trinitrophenol.
    Pinrat O; Boonkitpatarakul K; Paisuwan W; Sukwattanasinitt M; Ajavakom A
    Analyst; 2015 Mar; 140(6):1886-93. PubMed ID: 25646174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid visual detection of nitroaromatic explosives using a luminescent europium-organic framework material.
    He N; Gao M; Shen D; Li H; Han Z; Zhao P
    Forensic Sci Int; 2019 Apr; 297():1-7. PubMed ID: 30739882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.
    Ma Y; Li H; Peng S; Wang L
    Anal Chem; 2012 Oct; 84(19):8415-21. PubMed ID: 22946839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A long-persistent phosphorescent chemosensor for the detection of TNP based on CaTiO
    Li F; Wang F; Hu X; Zheng B; Du J; Xiao D
    RSC Adv; 2018 May; 8(30):16603-16610. PubMed ID: 35540505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Synthesis of an Efficient Fluorescent Probe Based on Oxacalix[4]arene for the Selective Detection of Trinitrophenol (TNP) Explosives in Aqueous System.
    Desai V; Modi K; Panjwani F; Seth BK; Vora M; Parikh J; Jain VK
    J Fluoresc; 2024 May; 34(3):1219-1228. PubMed ID: 37515663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile and sensitive hexahomotrioxacalix[3]arene-based fluorescent sensor for the detection of trace amounts of 2,4,6-trinitrophenol.
    Liu YL; Wu LF; Wu C; Rahman S; Alodhayb A; Redshaw C; Georghiou PE; Yamato T
    Sci Total Environ; 2024 Jan; 908():168209. PubMed ID: 37914116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hazardous 2,4,6-Trinitrophenol (TNP) Detection in Water by Amine and Azine Functionalized Metal-Organic Framework.
    Kaur M; Malik AK
    J Fluoresc; 2024 May; ():. PubMed ID: 38748340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An amphiphilic dansyl based multianalyte sensor for the detection of Hg
    Gadiyaram S; Aakshika Sree M; Sharma N; Amilan Jose D
    Methods; 2024 Mar; 223():45-55. PubMed ID: 38272245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A turn-off Eu-MOF@Fe
    Zhang X; Ma Q; Liu X; Niu H; Luo L; Li R; Feng X
    Food Chem; 2022 Jul; 382():132379. PubMed ID: 35152023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Eu(iii) metal-organic framework based on anthracenyl and alkynyl conjugation as a fluorescence probe for the selective monitoring of Fe
    Zhao Y; Wang CA; Li JK; Li QL; Guo Q; Ru J; Ma CL; Han YF
    RSC Adv; 2022 Sep; 12(41):26945-26952. PubMed ID: 36320831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Förster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters.
    Deng X; Huang X; Wu D
    Anal Bioanal Chem; 2015 Jun; 407(16):4607-13. PubMed ID: 25893800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.