BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 34889443)

  • 21. Luspatercept in Myelodysplastic Syndromes: Who and When?
    Komrokji RS
    Hematol Oncol Clin North Am; 2020 Apr; 34(2):393-400. PubMed ID: 32089218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Luspatercept: First Approval.
    Markham A
    Drugs; 2020 Jan; 80(1):85-90. PubMed ID: 31939073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Luspatercept stimulates erythropoiesis, increases iron utilization, and redistributes body iron in transfusion-dependent thalassemia.
    Garbowski MW; Ugidos M; Risueño A; Shetty JK; Schwickart M; Hermine O; Porter JB; Thakurta A; Vodala S
    Am J Hematol; 2024 Feb; 99(2):182-192. PubMed ID: 37782758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigational drugs in phase I and phase II clinical trials for thalassemia.
    Motta I; Scaramellini N; Cappellini MD
    Expert Opin Investig Drugs; 2017 Jul; 26(7):793-802. PubMed ID: 28540737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2021 update on clinical trials in β-thalassemia.
    Musallam KM; Bou-Fakhredin R; Cappellini MD; Taher AT
    Am J Hematol; 2021 Nov; 96(11):1518-1531. PubMed ID: 34347889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-life experience with luspatercept in transfusion-dependent β-thalassemia.
    Roccotelli D; Grande D; Cicco G; Palma A; Longo MC; Albano F; Vitucci A; Musto P
    Ann Hematol; 2023 Oct; 102(10):2965-2967. PubMed ID: 37498329
    [No Abstract]   [Full Text] [Related]  

  • 27. Oral ferroportin inhibitor vamifeport for improving iron homeostasis and erythropoiesis in β-thalassemia: current evidence and future clinical development.
    Porter J; Taher A; Viprakasit V; Kattamis A; Coates TD; Garbowski M; Dürrenberger F; Manolova V; Richard F; Cappellini MD
    Expert Rev Hematol; 2021 Jul; 14(7):633-644. PubMed ID: 34324404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Luspatercept, a two-edged sword in beta-thalassemia-associated paravertebral extramedullary hematopoietic masses (EHMs).
    Alashkar F; Klump H; Lange CP; Proske P; Schüssler M; Yamamoto R; Carpinteiro A; Berliner CA; Schlosser TW; Röth A; Reinhardt HC
    Eur J Haematol; 2022 Dec; 109(6):664-671. PubMed ID: 36045599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone marrow Tfr2 deletion improves the therapeutic efficacy of the activin-receptor ligand trap RAP-536 in β-thalassemic mice.
    Tanzi E; Di Modica SM; Bordini J; Olivari V; Pagani A; Furiosi V; Silvestri L; Campanella A; Nai A
    Am J Hematol; 2024 Jul; 99(7):1313-1325. PubMed ID: 38629683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug safety in thalassemia: lessons from the present and directions for the future.
    Grech L; Sultana J; Borg K; Borg J
    Expert Opin Drug Saf; 2021 Aug; 20(8):937-947. PubMed ID: 33877003
    [No Abstract]   [Full Text] [Related]  

  • 31. Novel Therapeutic Advances in β-Thalassemia.
    Makis A; Voskaridou E; Papassotiriou I; Hatzimichael E
    Biology (Basel); 2021 Jun; 10(6):. PubMed ID: 34207028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ineffective erythropoiesis and its treatment.
    Cazzola M
    Blood; 2022 Apr; 139(16):2460-2470. PubMed ID: 34932791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beta-thalassemia and the advent of new interventions beyond transfusion and iron chelation.
    Chauhan W; Shoaib S; Fatma R; Zaka-Ur-Rab Z; Afzal M
    Br J Clin Pharmacol; 2022 Aug; 88(8):3610-3626. PubMed ID: 35373382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Current management of thalassemia intermedia].
    Thuret I
    Transfus Clin Biol; 2014 Nov; 21(4-5):143-9. PubMed ID: 25282488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ferroportin inhibitor vamifeport ameliorates ineffective erythropoiesis in a mouse model of β-thalassemia with blood transfusions.
    Kalleda N; Flace A; Altermatt P; Ingoglia G; Doucerain C; Nyffenegger N; Dürrenberger F; Manolova V
    Haematologica; 2023 Oct; 108(10):2703-2714. PubMed ID: 37165842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hurdles to the Adoption of Gene Therapy as a Curative Option for Transfusion-Dependent Thalassemia.
    Thuret I; Ruggeri A; Angelucci E; Chabannon C
    Stem Cells Transl Med; 2022 Apr; 11(4):407-414. PubMed ID: 35267028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemoglobin disorders: lentiviral gene therapy in the starting blocks to enter clinical practice.
    Sii-Felice K; Giorgi M; Leboulch P; Payen E
    Exp Hematol; 2018 Aug; 64():12-32. PubMed ID: 29807062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfusion suppresses erythropoiesis and increases hepcidin in adult patients with β-thalassemia major: a longitudinal study.
    Pasricha SR; Frazer DM; Bowden DK; Anderson GJ
    Blood; 2013 Jul; 122(1):124-33. PubMed ID: 23656728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activin receptor ligand traps in chronic kidney disease.
    Jelkmann W
    Curr Opin Nephrol Hypertens; 2018 Sep; 27(5):351-357. PubMed ID: 29847322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Expert Overview on Therapies in Non-Transfusion-Dependent Thalassemia: Classical to Cutting Edge in Treatment.
    Saeidnia M; Fazeli P; Farzi A; Atefy Nezhad M; Shabani-Borujeni M; Erfani M; Tamaddon G; Karimi M
    Hemoglobin; 2023 Nov; 47(2):56-70. PubMed ID: 37325871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.